

AMERICAN UNIVERSITY OF BEIRUT Faculty of Arts and Sciences Mathematics Department

MATH-CMPS 281 FINAL EXAMINATION SPRING 2005

Closed Book. Two hours

SUBMIT THE QUESTION SHEET WITH SCRATCH BOOKLET

STUDENT NAME	
ID NUMBER	
ID NOMBER	

Problem	Grade	Out of
1		22
2		24
3		22
4		32
TOTAL		100
TOTAL		100

- 1. (22 points) Let v be a non-zero column vector of dimension n.
 - (a) (4 points) Give the number of references and the number of flops for the BLAS operations: v^Tv and vv^T . Specify the names of these operations.
 - (b) (4 points) Let $u = \frac{1}{(u^T u)^{1/2}} v$. Show that $||u|| := ||u||_2 = 1$.
 - (c) (4 points) Let $x \in \mathbb{R}^n$ be a column vector. Show that $(uu^T)x = (u^Tx)u$. Give the number of flops necessary to compute $(uu^T)x$ without computing uu^T .
 - (d) (4 points) Show that the matrix $H = I 2uu^T$ is symmetric and orthogonal. (where I is the identity n by n matrix).

(e) (6 points) For $x \in \mathbb{R}^{n,1}$, prove that the GAXPY operation Hx reduces to a SAXPY operation.

2.	(24 points) Let $A \in \mathbb{R}^{n,n}$ be a square matrix, such that : (i) A is invertible and (ii)
	$A = LU$, where L is an $n \times n$ lower triangular matrix with 1's on its diagonal and U
	is upper triangular $n \times n$.

(a) (6 points) Show that the LU decomposition of A is unique.

(b) (6 points) Let D be the diagonal matrix which elements are $u_{ii}|i=1,...,n$, the diagonal elements of U. Show that A=LU is equivalent to $A=LDM^T$, where M is a lower triangular matrix with 1's on the diagonal. Give an explicit formula for M.

(c) (6 points) Complete the following MATLAB program that gives the LDM^T decomposition for an invertible matrix A.

function [L,D,M]=ldm(A)
% A is invertible and admits the LU decomposition
[L,U]=lu(A);

D= ; M= ;

(d) (6 points) Assume we add the assumption that A is symmetric, i.e. $A = A^T$. Prove that $A = LDL^T$, i.e. M = L.

3. (22 points) Let $D_n = \{(x_i, y_i) | i = 1, 2, ..., n\}$, with $x_i \neq x_j$, $i \neq j$. Define the column vectors of length $\mathbf{n} \in (1111...1)^T$, $x = (x_1 x_2 x_n)^T$ and $y = (y_1 y_2 y_n)^T$. Finally let A be the n by 2 matrix:

$$A = [x \ e]$$

(a. (6 points) Prove that rank(A) = 2.

(b) (6 points) Show that the 2 by 2 matrix $B = A^T A$ is symmetric and positive definite.

(c) (10 points) The MATLAB commands $w=A\y$ and $w=B\(A'*y)$ give the same result which the unique solution of the least squares problem

$$||y - Aw||_2 = \min_{z \in \mathbb{R}^2} ||y - Az||_2$$

Specify the equation verified by w then give numerical linear algebra methods that are used by each of these commands.

- 4. (32 points) Given the matrices A and $B = A^T A$ defined in the previous problem from the data D_n , answer the following:
 - (a) (4 points) Let $\{\sigma_1, w_1\}$ and $\{\sigma_2, w_2\}$ be the 2 pairs of eigenvalues-eigenvectors associated with the matrix B, with $\sigma_1 \leq \sigma_2$. Using appropriately the MATLAB command $[\mathbb{W}, \mathbb{D}] = \text{eig}(B)$, generate from this command $\{\sigma_1, w_1\}$ and $\{\sigma_2, w_2\}$ by completing the following segment of MATLAB code:

```
[w,D] = eig(B);
sigma1=...;
sigma2=...;
w1=...;
w2=...;
```

(b) (4 points) State the theorem that assesses why $w_1^T w_2 = 0$ and $w_i^T w_i = 1$, i = 1, 2. Also, say why $\sigma_i > 0$, $\forall i = 1, 2$.

(c) (6 points) Let $v_i = \frac{1}{\sqrt{\sigma_i}}Aw_i$, i = 1, 2. Show that $v_i \in \mathbb{R}^n$, i = 1, 2 with $v_1^Tv_2 = 0$ and $v_i^Tv_i = 1$, i = 1, 2.

(d) (4 points) Prove also that v_1 and v_2 verify:

$$AA^Tv_i = \sigma_i v_i, \ i = 1, 2.$$

(e) (4 points) Let $u_i = \frac{1}{\sqrt{\sigma_i}} A^T v_i \in \mathbb{R}^2, i = 1, 2$. Prove that

$$AA^Tv_i = \sigma_i v_i, \ i = 1, 2.$$

is equivalent to .

$$Au_i = \sqrt{\sigma_i}v_i, i = 1, 2.$$

(f) (6 points) Put the equations

$$Au_i = \sqrt{\sigma_i}v_i, i = 1, 2,$$

in matrix form. For that purpose, define the matrices $U = [u_1 \ u_2], \ V = [v_1 \ v_2]$ and S the 2 by 2 diagonal matrix whose elements are $\sqrt{\sigma_1}$ and $\sqrt{\sigma_2}$. Give the sizes of the matrices U and V, then show that :

$$AU = VS$$
.

(g) (4 points) Give the value of $||A||_2$ in terms of σ_1 and σ_2 .