
PHY 218 Quiz I

Write down the two KCL (4 pts) and three KVL (10 pts) equations for the circuit shown in the figure 14 Note: There is no need to solve the equations. a. Use the Nodal method to show that (15 pts) note $\chi = j\omega RC$ $\alpha = (V_0/V_i) = \chi^2/(\chi^2 + 2\chi - 1)$ Which of the plots belongs to the circuit? Justify briefly. (5 pts) a. Calculate I₁ (10 pts.) b. Why isn't there Impedance Match between source and load? Re-(4 pts.) For the transmission line shown, take $Z_0 = 50\Omega$, 1 = 75cm, $v = 2.4 \times 10^8$ m/s, and the input impedance of the receiver is $Z = 75\Omega$ Pulse Generator a. Show that the reflection coefficient is 0.2 (5 points) Coaxial b. Calculate the upper limit of the frequencies. Counter Cable Answer 6 of the following 9 questions. (6x7 = 42 points) Note: The the answer will be ignored. Specify the limits for differentiation and integration (T >> RC or T << RC)Why is the product RC constant for a real capacitor? Why do some resistors have MORE than 4 colour bands? What were the assumptions made while deriving the formula $C = \epsilon_0 A/d$? Why is a coaxial cable rather than a parallel pair of wires used in communications? Mention three uses of transformers. Why did we plot the Log(α) versus Log(F) rather than simply α versus F? Why is the quality factor of a parallel LRC circuit directly (not inversely) proportional to R? $[Q = R(C/L)^{1/2}]$ Which of the four spectra belongs to the waveform? Explain your answer clearly. (No explanation, no points) (a) $A_n = A_1/n$ b. $A_n = A_1/n$ odd only c. $A_n = A_1/n^2$ d. $A_n = A_1/n^2$ odd only $f. A_3 = A_1$ e. $A_2 = A_1$ Good Luck! 2x14 + 20 + 10 + 42 = 100

Bonus:

Argue that an educated guess for the equivalent capacitance of the combination shown is $C_e \sim 2.45 C$ (The exact value is $C_e \sim 2.37 C$)

