Quiz I

Note: Cellular phones and programmable calculators are not allowed.

1. For the circuit shown in the figure

3/	Write down	the Kirchhoff	Current and	Voltage	Laws.
----	------------	---------------	-------------	---------	-------

(14 pts.)

Take
$$V_1$$
=9v, V_2 =6v, R_1 = R_2 = R_3 = 12Ω. Calculate I_2 .

(6 pts.)

For the circuit shown in the figure take $V_s = 15v$, $R_1 = R_2 = 60\Omega$.

Follow any method of your choice to calculate I_1 .

(10 pts.)

Calculate the power dissipated in (R_2)

(7 pts.)

Is Impedance Matching satisfied? Explain briefly.

(3 pts.)

3. For the RC filter circuit shown in the figure

(5 pts.)

Show that $f_o = 10 \text{ KHz}$ b. Argue that $\alpha = 1/[1 + (f/f_o)^2]^{1/2}$

(6 pts.)

Draw the Bode Diagram for 10Hz < f < 10 MHz

(7 pts.)

- Note: You may save time by drawing on the figure itself.
- Answer 6 of the following 9 questions briefly. (6x7 = 42 pts.)Note: The 7th answer will be ignored.
 - Which type of resistors is the cheapest and which most expensive?

Why is the physical size of capacitors proportional to its value, whereas this relation does not hold for resistors?

- Why did we use ODD Fourier harmonics only to construct a "square wave"
- When the characteristic Impedance (Zo) of a transmission line does NOT match that of the receiver, there will be reflections. Why does that impose an UPPER (not a lower) limit on the frequency?
 - Why is a coaxial cable rather than a parallel pair of wires used in communications? H prevents major is
- Define Thevenin's Theorem and give an example.
- For which frequencies will the filter in question 3 act an analogue computer? Explain briefly.
- Give two reasons explaining why inductors can't be used in chips.
- Why do transmission lines have capacitance and inductance?

Good Luck!

2x20 + 18 + 42 = 100