Haigazian University

MATH 219 Test 3

Date: Fri 29 April 2011

Instructor: Ara Jamboulian

Bali Georges

1. Given the matrix

$$A = \begin{bmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{bmatrix}$$

- (a) What is rank(A) when a = 1?
- (b) Find the value of a for which rank(A) = 2
- 2. (a) Find a basis for the nullspace of the matrix

$$B = \begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{bmatrix}$$

- (b) Find a basis for the row space of \boldsymbol{B}
- **3.** What conditions must be satisfied by b_1 , b_2 , b_3 , b_4 , and b_5 for the following linear system to be consistent?

$$x_1 - 3x_2 = b_1$$

 $x_1 - 2x_2 = b_2$
 $x_1 + x_2 = b_3$
 $x_1 - 4x_2 = b_4$
 $x_1 + 5x_2 = b_5$

- 4. Fill in the blank.
 - (a) If A is a 3×5 matrix, then the number of leading 1's in the reduced rowechelon form of A is at most 3
 - (b) If A is a 3×5 matrix, then the number of free variables (parameters) in the general solution of Ax = 0 is at least ________
 - (c) The vector space of all diagonal $n \times n$ matrices has dimension \angle
 - (d) If A is a 5×3 matrix, then the nullity of A^T is at least $\underline{\mathcal{G}}$

5. Let
$$p_1 = 1 + x$$
, $p_2 = 1 + x^2$, $p_3 = x + x^2$

- (a) Show that $S = \{p_1, p_2, p_3\}$ is a basis for P_2
- (b) Express $p=2-x+x^2$ as a linear combination of p_1 , p_2 , p_3
- Given the three matrices

$$A = \begin{bmatrix} 3 & 6 \\ 3 & -6 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \qquad C = \begin{bmatrix} 0 & -8 \\ -12 & -4 \end{bmatrix}$$

Find a matrix D such that $\{A,B,C,D\}$ is a basis for M_{22}