PHY 233 QuizII

1. For the state transition diagram, check to see if the four principles and rules is satisfied by the state assignment map given.

(P1: 7pts., P2: 5pts., P3: 3pts., Rule1: 5pts. Total: 20 pts.)

For the "Loose" state transition Diagram shown:

a. Follow the method of partition to reduce the number of states. (Show all your steps explicitly)

(15 p)

b. Draw the <u>reduced</u> state transition diagram.

(5p)

Answer two of the following three questions. Note: The third answer will be ignored. (2x15=30 p)

Give the number of lines in each of the slashed lines of the 4x3 block shown . (6 pts.)

Show how two such blocks can be used to construct an 4x6 multiplier. (9 pts.)

3B. For the adder shown, identify the 9 single wires (other than CLK) that interconnect the blocks by labels like: Preset, Clear, Shift Left, Carry, etc. ... Assume that all the chips are already enabled.

3C. Show how the State Transition Diagram can be realized using the ONE_HOT method. You may use gates or Multiplexers as you please.

3. Answer 5 of the following 8 questions briefly. Include a diagram wherever necessary.

Note: The 6th answer will be ignored.

(6x5=30p)

a. Explain why it may be wise to use <u>longer</u> than necessary labels in state assignment?

(b. From the technical (not logical) point of view, why is it necessary that each state has a next state?

c. Why do we expect to find an OR gate at the input control of each flip-flop of a binary counter that can count down to zero starting from a given arbitrary number?

d. Define Clock Suppression and Alternate State Transition

- e. Give the algorithm of a Successive Approximation Register (SAR)
- f. Why is it unwise to branch on more than one asynchronous input?

g Define Functional Partition and Datapath.

h. Convert the D_B map shown to J-K maps. (No need to calculate J & K)

Good Luck!

2x20 + 2x30 = 100

c 2011

