Extra Problems

1. For which values of a and b does the following system has no solution exactly one or infinitely many solutions:

$$
\left\{\begin{array}{c}
a x+z=2 \\
a x+a y+4 z=-4 \\
(a-1) y+2 z=b
\end{array}\right.
$$

2. For which value(s) of a is the set $S=\left\{a x^{3}, x^{3}+(2 a-1) x^{2}, a^{2}, x^{2}+(a-4) x\right\}$ linearly independent.
3. a- Find matrices A, B, C such that $A C=B C$ with $A \neq B$.
b-Determine all 2×2 matrices A such that $A^{2}=0$.
4. For which value(s) of λ the reduced row echelon form of B is I.

$$
B=\left(\begin{array}{cccc}
1 & 1 & \lambda & 2 \\
1 & \lambda & 1 & -1 \\
\lambda & 1 & 1 & 0 \\
2 \lambda-1 & 2-\lambda & 1 & 0
\end{array}\right)
$$

5. If $\left(I+(2 A)^{-1}\right)^{-1}=\left(\begin{array}{cc}1 & -2 \\ -3 & 5\end{array}\right)$. Find A.
6. Let A be a square matrix such that : $A^{3}+4 A A^{T}-2 A-7 I=0$. Find an expression for A^{-1}.
7. Let $J=\left(\begin{array}{cccc}1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$. Find J^{2} and J^{3}. Deduce J^{n}.
8. Let J be the $n \times n$ matrix each of which entries is 1 . Show that if $n>1$ then:

$$
(I-J)^{-1}=I-\frac{1}{n-1} J
$$

9. True/False (prove or explain if true, give a counter-example if false)
a- If $A^{T} A$ is invertible so is A.
b- If $A^{4}=0$ then $I-A$ is invertible.
c- If A is invertible then $A x=x$ has exactly one solution.
d. If $\left\{v_{1}, v_{2}, \ldots v_{r}\right\}$ is a linearly dependent set then $\left\{v_{1}, v_{2}, \ldots v_{r}, v_{r+1} \ldots v_{n}\right\}$ is also linearly dependent.
