MATHEMATICS 218
FALL SEMESTER 2010-2011 FINAL EXAMINATION

Time: 120 minutes Date: January 31, 2011

Name:
ID Number:
Section:

QUESTION	GRADE
1	$/ 25$
2	$/ 20$
3	$/ 25$
4	$/ 30$
5	$/ 30$
6	$/ 40$
7	$/ 30$
TOTAL GRADE	$/ 200$

Answer the following set of questions on the allocated pages; the back of pages may be used if needed

1. Let $A=\left(\begin{array}{ccc}0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right)$
(a) Find the eigenvalues of A.
(b) Find a basis for each of the eigenspaces.
(10 points)
(c) Deduce that A is diagonalizable and write a formula calculating A^{5}.
2. Consider the following system:

$$
\left\{\begin{array}{c}
x+2 z=2 \\
2 x+4 z=6 \\
y+2 z=4
\end{array}\right.
$$

(a) Find the least squares solution of the above system $A x=b$
(b) Find the projection of b onto the Column Space of (A). (8 points)
3. Let $W=\left\{\left.\left[\begin{array}{l}x \\ y \\ z \\ w\end{array}\right] \in R^{4} \right\rvert\, w+2 x+2 y+4 z=0\right\}$
(a) Find a basis for W.
(b) Find a basis for W^{\perp}.
(7 points)
(c) Use parts (a) and (b) to find an orthogonal basis for R^{4} with respect to the Euclidean inner product.
(10 points)
4. Let $T: P_{3} \rightarrow P_{3}$ be the linear transformation defined by:

$$
T(p(x))=p^{\prime}(x)-p^{\prime \prime}(x)+p(0)
$$

(a) Let $B=\left\{1, x, x^{2}, x^{3}\right\}$, find $[T]_{B}$
(6 points)
(b) Find a basis for the nullspace of T.
(8 points)
(c) Find a basis for the range of T.
(6 points)
(d) Let $B^{\prime}=\left\{1, x-1, x^{2}-2 x, x^{3}\right\}$, use (a) to find $[T]_{B^{\prime}}$.
(10 points)
5. Answer the following INDEPENDENT questions.
(10 points each)
(a)

- For which values of t is $\langle p, q\rangle=\int_{t}^{2} p(x) q(x) d x$ an inner product on $V=P_{2}$?
- For which of the values of t obtained above would the two polynomials $p(x)=x+1$ and $q(x)=2$ be orthogonal?
(b) Let W be a subspace of $V=M_{2 \times 2}$, with basis $B=\{I, A\}$, where $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $A=\left[\begin{array}{ll}8 & 4 \\ 2 & 1\end{array}\right]$.
Let $T: W \rightarrow W$ be given by $T(M)=A M$.
- Find $[T]_{B}$
- Use $[T]_{B}$ to compute $T(3 I-A)$.
(c) For which value(s) of k would the vector $v=\left[\begin{array}{r}1 \\ -1\end{array}\right]$ be an eigenvector of the matrix $A=\left[\begin{array}{rr}k & 0 \\ 1 & -1\end{array}\right]$?

6. Prove the following:

(10 points each)
(a) Let $W=\operatorname{span}\{w\}$ be a subspace of an inner product space V. Let $b \in V$ and not in W. Use the Cauchy-Schwartz inequality to prove that:

$$
\left\|p r o j_{W}(b)\right\| \leq\|b\|
$$

(b) Let $V=P_{2}$ and $p, q \in P_{2}$. Show that:

$$
<p, q>=p(0) q(0)+p\left(\frac{1}{2}\right) q\left(\frac{1}{2}\right)+p(1) q(1)
$$

is an inner product in P_{2}.
(c) Let A be an $n \times n$ matrix.

- Show that if $A^{2}=0$ then Column space of $(A) \subset \operatorname{Nullspace}(A)$
- Deduce that if $A^{2}=0$ then $\operatorname{rank} A \leq \frac{n}{2}$
(d) Let $T: V \rightarrow V$ be a linear transformation such that $T \circ T=T$. Show that Range $(T) \cap \operatorname{Nullspace}(T)=0$

7. Indicate whether each of the following statements is TRUE (T) or FALSE (F) without justifying your answer. (3 points each)
--(a) The set of all 3×3 matrices with $\operatorname{det}(A)=0$ is a subspace of $M_{3 \times 3}$.
--(b) Let $T: P_{2} \rightarrow R$ defined by $T\left(a x^{2}+b x+c\right)=|a|$ is a linear transformation.
-(c) Let $T: V \rightarrow W$ be a linear transformation. If $\operatorname{dim} V<\operatorname{dim} W$ then T cannot be onto.
-(d) Let A, B and C be $n \times n$ matrices, if $A B=A C$ then $B=C$.
--(e) The dimension of the vector space of the $n \times n$ upper triangular matrices is $\frac{n^{2}-n}{2}$.
--(f) $T: V \rightarrow W$ be a linear transformation with $\left\{v_{1} \ldots v_{n}\right\}$ linearly independent in V, then $\left\{T\left(v_{1}\right) \ldots T\left(v_{n}\right)\right\}$ are linearly independent.
--(g) If λ is an eigenvalue of an idempotent matrix A (i.e: $A^{2}=A$) then $\lambda=0$ or $\lambda=1$.
--(h) In R^{2} with the standard inner product, the orthogonal complement of $y=2 x$ is $y=\frac{1}{2} x$.
--(i) If $T: R^{n} \rightarrow R^{m}$ is a linear transformation and $m=n$ then T is an isomorphism.
--(j) If λ is an eigenvalue for A then λ^{n} is an eigenvalue for A^{n} for all $n \in \mathbb{Z}$.
