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30-1  Faraday’s Law and Lenz’s Law 

First Experiment. Figure  shows a conducting loop connected to 
a sensitive ammeter. Because there is no battery or other 
source of emf included, there is no current in the circuit. 
However, if we move a bar magnet toward the loop, a current 
suddenly appears in the circuit. The current disappears when 
the magnet stops moving. If we then move the magnet away, a 
current again suddenly appears, but now in the opposite 
direction. If we experimented for a while, we would discover the 
following: 

1. A current appears only if there is relative motion between the loop and the magnet 
(one must move relative to the other); the current disappears when the relative 
motion between them ceases. 

2. Faster motion of the magnet produces a greater current. 

3. If moving the magnet’s north pole toward the loop causes, say, clockwise current, 
then moving the north pole away causes counterclockwise current. Moving the 
south pole toward or away from the loop also causes currents, but in the reversed 
directions from the north pole effects. 
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30-1  Faraday’s Law and Lenz’s Law 

Second Experiment. For this experiment we use the 
apparatus shown in the figure, with the two conducting 
loops close to each other but not touching. If we close 
switch S to turn on a current in the right-hand loop, the 
meter suddenly and briefly registers a current—an induced 
current—in the left-hand loop. If the switch remains 
closed, no further current is observed. If we then open the 
switch, another sudden and brief induced current appears 
in the left-hand loop, but in the opposite direction.  

We get an induced current (from an induced emf) only when the current in the right-
hand loop is changing (either turning on or turning off) and not when it is constant 
(even if it is large). The induced emf and induced current in these experiments are 
apparently caused when something changes — but what is that “something”? 
Faraday knew. 
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Induction and Faraday law 

Magnetic flux 

 The current is actually induced by a change in the quantity 
called the magnetic flux rather than simply by a change in the 
magnetic field. 

 Magnetic flux is proportional to both the strength of the 
magnetic field passing through the plane of a loop of wire and 
the area of the loop. 
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Induction and Faraday law 

You are given a loop of wire. The wire is in a uniform magnetic field . The loop 
has an area A. 

(θ is the angle between B and the normal to the plane) 

For B = 0.40 T,  A = 0.10 m2, and  θ = 60°; we find: 

Φ =  0.20 Wb; with 1 Wb = 1 T.m2. 
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Induction and Faraday law 

Rank the magnetic flux in decreasing order 
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30-1  Faraday’s Law and Lenz’s Law 

The magnetic flux ΦB through an area A in a magnetic field B is defined as 
 
 
 
 
where the integral is taken over the area. The SI unit of magnetic flux is the weber, 
where 1 Wb = 1 T  m2. 
If B is perpendicular to the area and uniform over it, the flux is 
 

Faraday’s Law of Induction 
Faraday realized that an emf and a current can be induced in a 
loop, as in our two experiments, by changing the amount of 
magnetic field passing through the loop. He further realized that 
the “amount of magnetic field” can be visualized in terms of the 
magnetic field lines passing through the loop. 
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30-1  Faraday’s Law and Lenz’s Law 

 
 
Faraday’s Law. With the notion of magnetic flux, we can state Faraday’s law in a 
more quantitative and useful way: 

Faraday’s Law of Induction 

the induced emf tends to oppose the flux change and 
the minus sign indicates this opposition. This minus 
sign is referred to as Lenz’s Law. 
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30-1  Faraday’s Law and Lenz’s Law 

Lenz’s Law 

An induced current has a direction such that the magnetic field due to this induced 
current opposes the change in the magnetic flux that induces the current. The induced 
emf has the same direction as the induced current. 

Lenz’s law at work. As the magnet is 
moved toward the loop, a current is 
induced in the loop. The current 
produces its own magnetic field, with 
magnetic dipole moment μ oriented so as 
to oppose the motion of the magnet. 
Thus, the induced current must be 
counterclockwise as shown. 
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Induction and Faraday law 

ΦB B and Bin have opposite directions 

ΦB B and Bin have same direction 

When applying Lenz’ Law, there are two magnetic fields 

to consider: 

- B: The external changing magnetic field  

- B induced: The magnetic field produced by the 

current in the loop. 

PHY 201 

 

 



30-1  Faraday’s Law and Lenz’s Law 

Lenz’s Law 

The direction of the current i induced in a loop is such that the current’s magnetic field Bind opposes the change 
in the magnetic field B inducing i. The field Bind is always directed opposite an increasing field B (a, c) and in the 
same direction as a decreasing field B (b, d ). The curled – straight right-hand rule gives the direction of the 
induced current based on the direction of the induced field. 
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Induction and Faraday law 

Find the direction of the induced current in each. 
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30-2  Induction and Energy Transfer 

In the figure, a rectangular loop of wire of width L has one 
end in a uniform external magnetic field that is directed 
perpendicularly into the plane of the loop. This field may be 
produced, for example, by a large electromagnet. The 
dashed lines in the figure show the assumed limits of the 
magnetic field; the fringing of the field at its edges is 
neglected. You are to pull this loop to the right at a constant 
velocity v.  
Flux change: Therefore, in the figure a magnetic field and a conducting loop are in 
relative motion at speed v and the flux of the field through the loop is changing with 
time (here the flux is changing as the area of the loop still in the magnetic field is 
changing). 
Rate of Work: To pull the loop at a constant velocity v, you must apply a constant 
force F to the loop because a magnetic force of equal magnitude but opposite 
direction acts on the loop to oppose you. The rate at which you do work — that is, 
the power — is then 
 
where F is the magnitude of the force you apply to the loop. 
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30-2  Induction and Energy Transfer 

Induced emf: To find the current, we first apply Faraday’s 
law. When x is the length of the loop still in the magnetic 
field, the area of the loop still in the field is Lx. Then, the 
magnitude of the flux through the loop is 
 
 
 
As x decreases, the flux decreases. Faraday’s law tells us that 
with this flux i decrease, an emf is induced in the loop. We 
can write the magnitude of this emf as 

in which we have replaced dx/dt with v, the speed at which the loop 
moves. 

A circuit diagram for 
the loop of above 
figure while the loop 
is moving. 
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30-2  Induction and Energy Transfer 

Induced Current: Figure (bottom) shows the loop as a 
circuit: induced emf is represented on the left, and the 
collective resistance R of the loop is represented on the 
right. To find the magnitude of the induced current, we can 
apply the equation   which gives 
  

In the Fig. (top), the deflecting forces acting on the three 
segments of the loop are marked F1, F2, and F3. Note, 
however, that from the symmetry, forces F2 and F3 are equal 
in magnitude and cancel. This leaves only force F1, which is 
directed opposite your force F on the loop and thus is the 
force opposing you.  

A circuit diagram for 
the loop of above 
figure while the loop 
is moving. 
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30-2  Induction and Energy Transfer 

So, F = -F1. the magnitude of F1  thus 
 
      
  
where the angle between B and the length vector L for the 
left segment is 90°. This gives us 

Because B, L, and R are constants, the speed v at which you move the 
loop is constant if the magnitude F of the force you apply to the loop 
is also constant. 
Rate of Work: We find the rate at which you do work on the loop as 
you pull it from the magnetic field: 
 
 
 
  
  
 

NOTE: The work that you do in pulling the loop through the 
magnetic field appears as thermal energy in the loop. 

A circuit diagram for 
the loop of above 
figure while the loop 
is moving. 
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30-4  Inductors and Inductance 

The crude inductors with which 
Michael Faraday discovered the law 
of induction. In those days 
amenities such as insulated wire 
were not commercially available. It 
is said that Faraday insulated his 
wires by wrapping them with strips 
cut from one of his wife’s petticoats. 

An inductor is a device that can be used to produce a 
known magnetic field in a specified region. If a 
current i is established through each of the N 
windings of an inductor, a magnetic flux ΦB links 
those windings. The inductance L of the inductor is 
 
 
The SI unit of inductance is the henry (H), where 1 
henry = 1H=1Tm2/A. 
 
The inductance per unit length near the middle of a 
long solenoid of cross-sectional area A and n turns 
per unit length is 
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30-5  Self-Induction 

If two coils — which we can now call inductors — are near 
each other, a current i in one coil produces a magnetic flux 
ΦB through the second coil. We have seen that if we 
change this flux by changing the current, an induced emf 
appears in the second coil according to Faraday’s law. An 
induced emf appears in the first coil as well. This process 
(see Figure) is called self-induction, and the emf that 
appears is called a  
 self-induced emf. It obeys Faraday’s law of induction just as other induced emfs do. 
For any inductor,  
 
Faraday’s law tells us that 
 
 
By combining these equations, we can write 
 

Note: Thus, in any inductor (such as a 
coil, a solenoid, or a toroid) a self-
induced emf appears whenever the 
current changes with time. The 
magnitude of the current has no 
influence on the magnitude of the 
induced emf; only the rate of change 
of the current counts. 
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A first order non-homogeneous differential equation: 

𝑎
𝑑𝑖(𝑡)

𝑑𝑡
+ 𝑏𝑖 𝑡 + 𝑐 = 0 where a,b,c are constants 
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30-6  RL Circuits 

If a constant emf    is introduced into a single-loop circuit containing a 
resistance R and an inductance L, the current rises to an equilibrium 
value of    /R according to 
 
 
 
Here τL, the inductive time constant, is given by 

An RL circuit. 

Plot (a) and (b) shows how the potential 
differences VR (= iR) across the resistor and VL (= L 
di/dt) across the inductor vary with time for 
particular values of    , L, and R. 

When the source of constant emf is removed and 
replaced by a conductor, the current decays from a 
value i0 according to 

The variation with time of (a) VR, the 
potential difference across the resistor in 
the circuit (top), and (b) VL, the potential 
difference across the inductor in that 
circuit.  
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30-7  Energy Stored in a Magnetic Field 

An RL circuit. 

If an inductor L carries a current i, the inductor’s magnetic field stores an energy given 
by 
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30-8  Mutual Induction 

If coils 1 and 2 are near each other, a changing current in either coil can induce an emf 
in the other. This mutual induction is described by 
 
 and 

Mutual induction. (a) The magnetic 
field B1 produced by current i1 in coil 
1 extends through coil 2. If i1 is 
varied (by varying resistance R), an 
emf is induced in coil 2 and current 
registers on the meter connected to 
coil 2. (b) The roles of the coils 
interchanged. 
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Electromagnetic Oscillations 



31-1 Electromagnetic Oscillations 

Eight stages in a single cycle of 
oscillation of a resistance less LC 
circuit. The bar graphs by each 
figure show the stored magnetic 
and electrical energies. The 
magnetic field lines of the 
inductor and the electric field 
lines of the capacitor are shown. 
(a) Capacitor with maximum 
charge, no current. (b) Capacitor 
discharging, current increasing. 
(c) Capacitor fully discharged, 
current maximum. (d) Capacitor 
charging but with polarity 
opposite that in (a), current 
decreasing. 

(e) Capacitor with maximum charge having polarity opposite that in (a), no current. ( f ) Capacitor 
discharging, current increasing with direction opposite that in (b). (g) Capacitor fully discharged, 
current maximum. (h) Capacitor charging, current decreasing. 
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31-1 Electromagnetic Oscillations 

Parts (a) through (h) of the Figure 
show succeeding stages of the 
oscillations in a simple LC circuit. The 
energy stored in the electric field of 
the capacitor at any time is 
 
 
where q is the charge on the capacitor 
at that time. The energy stored in the 
magnetic field of the inductor at any 
time is 
 
 
where i is the current through the 
inductor at that time. 
 The resulting oscillations of the capacitor’s electric field and the inductor’s magnetic field 
are said to be electromagnetic oscillations. 

PHY 201 

 

 

PHY 201 

 

 



31-1 Electromagnetic Oscillations 

From the table we can deduce the correspondence between these 
systems. Thus, 
 q corresponds to x,       1/C corresponds to k,  
 i corresponds to v, and   L corresponds to m.  
 
The correspondences listed above suggest that to find the angular 
frequency of oscillation for an ideal (resistanceless) LC circuit, k should be 
replaced by 1/C and m by L, yielding 
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31-1 Electromagnetic Oscillations 

LC Oscillator 

The total energy U present at any instant in an oscillating LC circuit is given by 
 
 
in which UB is the energy stored in the magnetic field of the inductor and UE is the 
energy stored in the electric field of the capacitor. Since we have assumed the circuit 
resistance to be zero, no energy is transferred to thermal energy and U remains constant 
with time. In more formal language, dU/dt must be zero. This leads to 
 
 
 
However, i = dq/dt and di/dt = d2q/dt2. With these substitutions, we get 
 
 
 
This is the differential equation that describes the oscillations of a resistanceless LC 
circuit. 
 

PHY 201 

 

 



31-1 Electromagnetic Oscillations 

Charge and Current Oscillation 
The solution for the differential equation equation that describes the oscillations of a 
resistanceless LC circuit is  
 
 
where Q is the amplitude of the charge variations, ω is the angular frequency of the 
electromagnetic oscillations, and ϕ is the phase constant. Taking the first derivative of 
the above Eq. with respect to time gives us the current: 
 
 
 
 
 
 

Answer: (a) εL= 12 V 

                (b) UB=150 μJ 
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31-1 Electromagnetic Oscillations 

Electrical and Magnetic Energy Oscillations 

The electrical energy stored in the LC circuit at time t is, 
 
 
 
The magnetic energy is,  
 
 
 
Figure shows plots of UE (t) and UB (t) for the case of ϕ=0. Note 
that 
1. The maximum values of UE and UB are both Q2/2C.  
2. At any instant the sum of UE and UB is equal to Q2/2C, a 

constant. 
3. When UE is maximum, UB is zero, and conversely. 
 

The stored magnetic 
energy and electrical 
energy in the RL circuit as 
a function of time. 
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31-2  Damped Oscillation in an RLC circuit 

A series RLC circuit. As the 
charge contained in the circuit 
oscillates back and forth 
through the resistance, 
electromagnetic energy is 
dissipated as thermal energy, 
damping (decreasing the 
amplitude of) the oscillations. 

To analyze the oscillations of this circuit, we write an equation 
for the total electromagnetic energy U in the circuit at any 
instant. Because the resistance does not store electromagnetic 
energy, we can write 

Now, however, this total energy decreases as energy is 
transferred to thermal energy. The rate of that transfer is,  
 
 
where the minus sign indicates that U decreases. By 
differentiating U with respect to time and then substituting 
the result we eventually  get, 
 
which is the differential equation for damped oscillations in an 
RLC circuit.  

Charge Decay. The solution to above Eq. is 
in which   and                  .              
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31-3  Forced Oscillations of Three Simple Circuits 

Forced Oscillations 
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31-3  Forced Oscillations of Three Simple Circuits 

Resistive Load 
The alternating potential difference across a resistor has 
amplitude 
 
where VR and IR are the amplitudes of alternating current iR and 
alternating potential difference vr across the resistance in the circuit.   

Angular speed: Both current and potential difference 
phasors rotate counterclockwise about the origin with an 
angular speed equal to the angular frequency ωd of vR and 
iR. 
Length: The length of each phasor represents the 
amplitude of the alternating quantity: VR for the voltage 
and IR for the current. 
Projection: The projection of each phasor on the vertical 
axis represents the value of the alternating quantity at time 
t: vR for the voltage and iR for the current. 
Rotation angle: The rotation angle of each phasor is equal 
to the phase of the alternating quantity at time t. 

A resistor is 
connected across an 
alternating-current 
generator. 

(a) The current iR and the potential 
difference vR across the resistor are plotted 
on the same graph, both versus time t. 
They are in phase and complete one cycle 
in one period T. (b) A phasor diagram 
shows the same thing as (a). 
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31-3  Forced Oscillations of Three Simple Circuits 

Inductive Load 
The inductive reactance of an inductor is defined as 
 
 
Its value depends not only on the inductance but also on the 
driving angular frequency ωd. 
 
 
The voltage amplitude and current amplitude are related by 

Fig. (left), shows that the quantities iL 
and vL are 90° out of phase. In this case, 
however, iL lags vL; that is, monitoring the 
current iL and the potential difference vL 
in the circuit of Fig. (top) shows that iL 
reaches its maximum value after vL does, 
by one-quarter cycle. 
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An inductor is connected 
across an alternating-
current generator. 



31-3  Forced Oscillations of Three Simple Circuits 

Capacitive Load 

The capacitive reactance of a capacitor, defined as 
 
 
Its value depends not only on the capacitance but also on the 
driving angular frequency ωd. 
 
 
The voltage amplitude and current amplitude are related by 

In the phasor diagram we see that iC 
leads vC, which means that, if you 
monitored the current iC and the 
potential difference vC in the circuit 
above, you would find that iC reaches its 
maximum before vC does, by one-quarter 
cycle. 
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A capacitor is connected 
across an alternating-
current generator. 
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31-4  The Series RLC Circuit 

Series RLC circuit with 
an external emf 

For a series RLC circuit with an external emf 
given by 
 
 
The current is given by 
 
 
the current amplitude is given by 
 
 
 

The denominator in the above equation is called the impedance Z of the circuit for 
the driving angular frequency ωd. 
 
 
If we substitute the value of XL and XC in the equation for current (I), the equation 
becomes: 
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31-4  The Series RLC Circuits 

From the right-hand phasor triangle in Fig.(d) we can write 

Phase Constant 

The current amplitude I is maximum  when the driving angular frequency ωd equals the 
natural angular frequency ω of the circuit, a condition known as resonance. Then XC= XL, 
ϕ = 0, and the current is in phase with the emf. 

Series RLC circuit with 
an external emf 

PHY 201 

 

 



 
 

 

31-5 

Power in Alternating-Current Circuits 



31-5  Power in Alternating-Current Circuits 

The instantaneous rate at which energy is dissipated in the resistor 
can be written as 

Over one complete cycle, the average value of sinθ, where θ is any 
variable, is zero (Fig.a) but the average value of sin2θ is 1/2(Fig.b). 
Thus the power is, 
 
 
 
 
 
 
 
 
 
 
 

The quantity I/ √2 is called the root-mean-square, or rms, value of 
the current i: 

We can also define rms values of voltages and emfs for alternating-
current circuits: 

In a series RLC circuit, the average power Pavg of the generator is 
equal to the production rate of thermal energy in the resistor: 

(a) A plot of sinθ versus θ. 
The average value over 
one cycle is zero. 

(b)  A plot of sin2θ versus θ 
. The average value over 
one cycle is 1/2. 
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31-6  Transformers 

A transformer (assumed to be ideal) is an iron core on 
which are wound a primary coil of Np turns and a 
secondary coil of Ns turns. If the primary coil is 
connected across an alternating-current generator, the 
primary and secondary voltages are related by 

An ideal transformer (two coils 
wound on an iron core) in a basic 
trans- former circuit. An ac 
generator produces current in the 
coil at the left (the primary). The 
coil at the right (the secondary) is 
connected to the resistive load R 
when switch S is closed. 

Energy Transfers. The rate at which the generator transfers 
energy to the primary is equal to IpVp. The rate at which 
the primary then transfers energy to the secondary (via the 
alternating magnetic field linking the two coils) is IsVs. 
Because we assume that no energy is lost along the way, 
conservation of energy requires that 

The equivalent resistance of the secondary circuit, as 
seen by the generator, is 
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Gauss’ Law for Magnetic Fields 



32-1  Induced Magnetic Fields 

Gauss’ law for magnetic fields is a formal way of saying 
that magnetic monopoles do not exist. The law asserts 
that the net magnetic flux ΦB through any closed 
Gaussian surface is zero: 
 
 
 
Contrast this with Gauss’ law for electric fields, 
 
 

If you break a 
magnet, each 
fragment becomes a 
separate magnet, 
with its own north 
and south poles. 

The field lines for the 
magnetic field B of a short 
bar magnet. The red curves 
represent cross sections of 
closed, three-dimensional 
Gaussian surfaces. 

Gauss’ law for magnetic fields says that there 
can be no net magnetic flux through the 
surface because there can be no net “magnetic 
charge” (individual magnetic poles) enclosed 
by the surface.  
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32-2  Induced Magnetic Fields 

A changing electric flux induces a magnetic field B. Maxwell’s Law, 
 
 
 
Relates the magnetic field induced along a closed loop to the 
changing electric flux ϕE through the loop. 
 
 
Charging a Capacitor. 
 As an example of this sort of induction, we consider the 
charging of a parallel-plate capacitor with circular plates. The 
charge on our capacitor is being increased at a steady rate 
by a constant current i in the connecting wires. Then the 
electric field magnitude between the plates must also be 
increasing at a steady rate.  
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32-2  Induced Magnetic Fields 

A changing electric flux induces a magnetic field B. Maxwell’s Law, 
 
 
 
Relates the magnetic field induced along a closed loop to the 
changing electric flux ϕE through the loop. 
 
 

PHY 201 

 

 



32-2  Induced Magnetic Fields 

Ampere-Maxwell Law 
Ampere’s law, 
 
 
gives the magnetic field generated by a current ienc encircled by a 
closed loop. 
Thus, the two equations (the other being Maxwell’s Law) that 
specify the magnetic field B produced by means other than a 
magnetic material (that is, by a current and by a changing electric 
field) give the field in exactly the same form. We can combine the 
two equations into the single equation: 
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32-3  Displacement Current 

If you compare the two terms on the right side of Eq. (Ampere-Maxwell Law), you will see 
that the product  ε0(dϕE/dt) must have the dimension of a current. In fact, that product has 
been treated as being a fictitious current called the displacement current id: 
 
 
 
Ampere-Maxwell Law then becomes, 
 
 
 
 
 
where id,enc is the displacement current encircled by the integration loop. 
 
 
 
 
 

Ampere-Maxwell law 
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32-3  Displacement Current 

The four fundamental equations of electromagnetism, called Maxwell’s equations 
and are displayed in Table 32-1. 

These four equations explain a diverse range of phenomena, from why a 
compass needle points north to why a car starts when you turn the ignition key. 
They are the basis for the functioning of such electromagnetic devices as 
electric motors, television transmitters and receivers, telephones, scanners, 
radar, and microwave ovens. 
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