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24-1 Electric Potential

+ +

1, Dy

Particle 1 1s located at point P in
the electric field of particle 2.

= |f we release particle 1 at P, it begins to move and thus has kinetic energy.
= Energy cannot appear by magic, so from where does it come?
It comes from the electric potential energy U associated with
the force between the two particles

= To account for the potential energy U (which is a scalar quantity), we define an electric
potential V (also a scalar quantity) that is set up at P by particle 2.
= The electric potential exists regardless of whether particle 1 is at P.
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24-1 Electric Potential

= By analogy to the gravitational potential energy, we have for the electric
potential energy a 1/r relationship.

_ kq19>
r

U

(Potential energy of two point charges; SI unit: J)

= Where the zero of potential energy is at very large separation r (r >>1)

» Potential energy can be positive or negative. It is positive for two like
charges and negative or two unlike charges.
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24-1 Electric Potential

Attraction or repulsion

= Two positive charges: q, Is fixed at the origin, and q, IS
free to move.

= |f charge g, Is released from rest on the +x-axis, describe
Its subsequent motion. Tell what happens to the kinetic
energy K, potential energy U, and total energy E

91 Q2
G]L\ O>—> X

(a) Y O

After release, g, accelerates to the right;
K increases, U decreases.

= After release, g, accelerates to the right
= Kincreases, U decreases
= E =K+ Uis conserved and stays constant.
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24-1 Electric Potential

Attraction or repulsion

= Two opposite charges: q, is fixed at the origin, and g, Is
free to move.

= If charge q, is released from rest on the +x-axis, describe
Its subsequent motion. Tell what happens to the kinetic
energy K, potential energy U, and total energy E

q4 q2
(b) é <« S, X
After releaée, q, accelerates to the left;
K increases, U decreases.

= After release, g, accelerates to the left, what about K, U & E?;
= Kincreases, U decreases (it becomes even more negative)
= E =K+ Uis conserved and stays constant.
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24-1 Electric Potential

= The electric potential V at a point P in the electric field of a charged object is

L
V=—
iy

= The electric potential is the amount of electric potential energy per unit charge

Iwo Cautions. (1) The (now very old) decision to call V' a potential was un-
fortunate because the term is easily confused with potential energy. Yes, the two
quantities are related (that is the point here) but they are very different and not
interchangeable. (2) Electric potential is a scalar, not a vector. (When you come
to the homework problems, you will rejoice on this point.)

= The Sl unit for potential that follows is the joule per coulomb.

This combination occurs so often that a special unit, the volt (abbreviated V), is used to
represent it.

1 volt = 1 joule per coulomb.

With two unit conversions, we can now switch the umt for electric field from new-
tons per coulomb to a more conventional unit:

" N)( w‘)(‘ 'lJ ) L
”\”C‘(lc, T3¢/ \INm. o
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24-1 Electric Potential

Change in Electric Potential. If the particle moves through a potential difference AV,
the change in the electric potential energy is

AU = g AV = g(V, — V).

Work by the Field. The work W done by the electric force as the particle moves from i

to f:
W=—AU=—gAV = —q(V,— V).

Conservation of Energy. If a particle moves through a change AV in electric potential
without an applied force acting on it, applying the conservation of mechanical energy
gives the change in kinetic energy as
U+ K =U+K,. _ _ v
K- AL AK = —qg AV g(Vy — Vo).
Work by an Applied Force. If some force in addition to the electric force acts on the
particle, we account for that work

initial eneroy) + (work by applied force) = (final energy - -
( nergy) + (work by app )= (& &y) AK =AU+ W, = —qAV + W,,,.
Ui+ Ki+ Wopo = U+ K.
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24-1 Electric Potential

Electron-volts. In atomic and subatomic physics, energy measures in the SI
unit of joules often require awkward powers of ten. A more convenient (but non-
ST unit) is the electron-volt (e V), which is defined to be equal to the work required
to move a single elementary charge e (such as that of an electron or proton)
through a potential difference AV of exactly one volt.

leV=e¢(1V)
= (1.602 X 1077 C)(1 J/C) = 1.602 X 1077 J.
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24-1 Electric Potential
= Definition: The electric potential, V, is the potential energy per unit

charge.

* Thus, the electric potential a distance r for a point charge g is:

Force and
potential
energy per
unit charge g

4

-

k
y =1
;

(Electric potential of a point charge; SI unit: V)

TABLE16.2 Electric potential defined by analogy with electric field

kg
Electric force: F= #
g
k
Potential energy: U = @
Electric field: E= F = ﬁ
do r?
Potential: =Y _ kq
qgo T

The force the charges —__ F F
exert on each other —P—r ’@"
q

T a o

The potential energy associated with the pair of charges

The field at this point qo removed

o r—@
q
The potential at this point /
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Equipotential Surfaces and
the Electric Field




24-2 Equipotential Surfaces and the Electric Field

Adjacent points that have the same electric potential form an equipotential surface,
which can be either an imaginary surface or a real, physical surface.

Equal work is done along

Figure shows a family of equipotential e ot e

surfaces associated with the electric field Mo work is doro a same surfaces.
. . . O WOrK IS done along

due to some distribution of charges. The Sty

work done by the electric field on a equipotential surface.

charged particle as the particle moves
from one end to the other of paths | and
Il is zero because each of these paths
begins and ends on the same w
equipotential surface and thus there is N0\, work is done along this path

net change in potential. The work done that returns to the same surface.

a s t h e Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

charged particle moves from one end to the other of paths Ill and IV is not
zero but has the same value for both these paths because the initial and final potentials are
identical for the two paths; that is, paths lll and IV connect the same pair of equipotential
surfaces.
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24-2 Equipotential Surfaces and the Electric Field

Equipotential surface

/Fic]d line
| |
|

L |

L

(a) (8) (c)

Figure 24-5 Electric field lines (purple) and
cross sections of equipotential surfaces
{gold) for (a) a uniform electric ficld,

(B} the field due to a charged particle,
and (c) the field due to an electric dipole.
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24-2 Equipotential Surfaces and the Electric Field

The electric potential difference between two pointsiand f Path  Field line

is . i
Vi— V= —f_' E - dv,

where the integral is taken over any path connecting the

points. If the integration is difficult along any particular path
we can choose a different path along which the integration

might be easier. . VR _— ok
If we choose V;= 0, we have, for the potential at a partlcular A test charge g, moves from point
point, i to point f along the path shown
£ in a non-uniform electric field.
V= —f L dy. During a displacement ds, an
i

electric force g, E acts on the test
charge. This force points in the
direction of the field line at the
location of the test charge.

In a uniform field of magnitude E, the change in
potential from a higher equipotential surface to a
lower one, separated by distance Ax, is

AV = —FE Ax,
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24-3 Potential due to a Charged Particle
Potential due to a group of Charged Particles

The potential due to a collection of charged particles is

il 1 ] )
V= 2 Vi = 2 9 (r charged particles).
i=1

daey o) T

Thus, the potential is the algebraic sum of the individual potentials, with no
consideration of directions.
A
‘i‘ A positively charged particle produces a positive electric potential. A negatively
charged particle produces a negative electric potential.
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Potential due to a Electric
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24-4 Potential due to a Electric Dipole

The net potential at P is given by

= 1 q —q
V=3V=V., +V_= ( + )
i=1 +) =) darey \ K4y Fi—y

q T~ N+
Amey Ry
We can approximate the two lines to P as being
parallel and their length difference as being the leg
of a right triangle with hypotenuse d (Fig. b). Also,
that difference is so small that the product of the
lengths is approximately r 2.

(a)
Copyright © 2014 John Wile

r-y— rey=dcos @ and r_yrey=r’ (a) Point P is a distance r from the midpoint O
We can approximate V to be ofa dlpole.. The Iln_e OP makes an angle
d cos 8 with the dipole axis.
v=—1 | | |
dme, (b) If P is far from the dipole, the lines of
where ¥ is measured from the dipole axis as lengths r,,, and r,, are approximately
shown in Fig. a. And since p=qd, we have parallel to the line of length r, and the
1 pcosé o dashed black line is approximately
V= dmey 1 (electric dipole) perpendicular to the line of length r,,,.
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Distribution




24-5 Potential due to a Continuous Charge Distribution

For a continuous distribution of charge (over an extended object), the potential is found by
(1) dividing the distribution into charge elements dg that can be treated as particles and then
(2) summing the potential due to each element by integrating over the full distribution:

1 (d
vzfdvz f 9
dme, r

We now examine two continuous charge distributions, a line and a disk.
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24-5 Potential due to a Continuous Charge Distribution

This charged rod

Llne Of Charge IP is o!?viously not a IP _
particle. But we can treat this
d 4 element as a particle.
Fig. a has a thin conducting rod of L ‘
length L. As shown in fig. b the | . — R
element of the rod has a differential
a b
charge of 0 v
o = Agx. IP Our job is to add the

ar potentials due to all
L‘ the elements.

r

.

This element produces an electric
potential dV at point P (fig c) given by

j—&7(;

—X — a—X
Here is the leftmost Here is the rightmost "~ L
1 dg 1 Adx element. element.
dv = = - - 'l.—| -
dae, r dare, (x* + d3)17 (d) (e)

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

P Here is how to find

distance r from the

4 r element.

- — X

—| [«—dx

<———X—->|
(9)

We now find the total potential V produced by the rod at point P by integrating dV along

the length of the rod, from x =0 to x = L (Figs.d and e)

L1 A
= | dV = dx
J L dme, (x* + dF)'°

Simplified to, V= 4*‘ In [ L+ (L? )" }
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Calculating the Field from
the Potential




24-6 Calculating the Field from the Potential

® The component of Ein any direction is the negative of the rate at
which the potential changes with distance in that direction:

aV
E, = ———.
as
® The x, y, and z components of E may be found from
V aV 4
Ex:—a—; E, = ——: Ez:—a :
0.x ay 0z

When E is uniform, all this reduces to

AV
As
where s Is perpendicular to the equipotential surfaces.

E:_

® The electric field is zero parallel to an equipotential
surface.
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24-7 Electric Potential Energy of a System of Charged

Particles
A

"' The total potential energy of a system of particles is the sum of the potential
energies for every pair of particles in the system.

The electric potential energy of a system of charged

il 9o
particles is equal to the work needed to assemble e: r ;Q
the system with the particles initially at rest and S b i
infinitely distant from each other. For two particles Two charges held a fixed
at separation r, distance r apart.
1
U= 919 {two-particle system).

B 4qe, r

Sample Problem 24.06 Potential energy of a system of three charged particles

Figure 24-19 shows three charged particles held in fixed i
positions by forces that are not shown. What is the electric 9 _ _
potential energy U of this system of charges? Assume that Energy Is associated

d =12 cm and that with each pair of

d 4 particles.

in which g = 150 nC.
Three charges are fixed at the

q=+q, q=-4q, and gq;= +2q,

J vertices of an equilateral triangle.
qe ? What is the electric potential
Covy;}gm-!:20!4)nhnwilzylvSom,ln(.Allvighurnervld, 3 energy Of the system?
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Electric Potential Energy
Multiple charges

All three charge pairs con-

tribute to the system’s po- 92
= For 3 charges and more, each pair ~ tential energy. /
will have a potential energy. The s

total potential energy is the sum 23
over all three pairs. q
&
13 e 43

kq19> n kq193 n kqoq3 (Potential energy of multiple

ri2 13 3 charges; SI unit: J)

Ul =

= The more charges there are the bigger the number of charge pairs (for
4 charges, there exist 6 pairs for & charges, 10 pairs, and so on...)
The bigger the computation above becomes.

» |t becomes necessary to describe energy in terms of the electric
potential.
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24 Summary

Electric Potential
* The electric potential V at point P in
the electric field of a charged object:
- W. U
F = - i
o g

Eq. 24-2

Electric Potential Energy
* Electric potential energy U of the
particle-object system:

U=gqV. Eq. 24-3

* If the particle moves through potential
AV.

AU=gqAV =g(V;- V). Eq.244

PHY 201

Mechanical Energy

* Applying the conservation of
mechanical energy gives the change in
kinetic energy:

AK = —g AV. Eq. 24-9

* In case of an applied force in a particle

AK = —g AV + W

app*
Eq. 24-11
* In a special case when AK=0:

ﬁ;ﬁpp =4 AV (for K; = K). Eq. 24-12

Finding V from E
* The electric potential difference
between two point / and f is:

f :
V- v - _j E.gy EA-20-18




24 Summary

Potential due to a Charged Particle
* due to a single charged particle at a
distance r from that particle :

I g
_41:'&:_1!‘

Vv
Eq. 24-26

* due to a collection of charged particles

M

RTINS q:
Tlllr_|EI'ITlIIIr £1'J'-'TEUlE"I i|lI-r

Potential due to an Electric Dipole
* The electric potential of the dipole is

Eq. 24-27

1 pcos@
2

Eq. 24-30

V

47e, ¥

PHY 201

Potential due to a Continuous

Charge Distribution
* For a continuous distribution of
charge:

1 dg
V= 4re, j r

Calculating E from V
* The component of E in any direction is:

Eq. 24-32

av
E =-——

Eq. 24-40
ds 9

Electric Potential Energy of a System

of Charged Particle
* For two particles at separation r:

1 g9

J=W=
dae, r

Eq. 24-46
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Capacitance




Introduction

= The capacitor: a device in which electrical energy can be stored

The batteries can supply energy at only a
modest rate, too slowly for the photoflash unit
to emit a flash of light. However, once the

capacitor is charged, it can supply energy at a
much greater rate when the photoflash unit is
triggered—enough energy to allow the unit to
emit a burst of bright light.

= The first step in our discussion of capacitors is to determine how much charge
can be stored. This “how much” is called capacitance.
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25-1 Capacitance

A capacitor consists of two isolated conductors (the plates) with charges +q and -q. Its
capacitance C is defined from

g = CV, 1 farad = 1 F = 1 coulomb per volt =1 C/V.

where V is the potential difference between the plates.

}V Electric field lines

; A T4
_ . Top side of

Bottom side of bottom

t(})lp plate has plate has 1

charge +¢ charge —¢

(a) ()
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

A parallel-plate capacitor, made up of As the field lines show, the electric field due to the
two plates of area A separated by a charged plates is uniform in the central region
distance d. The charges on the facing between the plates. The field is not uniform at the
plate surfaces have the same magnitude edges of the plates, as indicated by the “fringing” of
q but opposite signs the field lines there.
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e Electric Circuit:

* Battery:
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* Electric Circuit: An electric circuit is a path
through which charge can flow.

e Battery: A battery is a device that maintains a certain
potential difference between its terminals
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25-1 Capacitance
Charging Capacitor

When a circuit with a battery, an open switch, and an uncharged capacitor is
completed by closing the switch, conduction electrons shift, leaving the capacitor
plates with opposite charges.

Terminal—\ -
AR
+
B ¥
o
Terminal—/ S

(a) (b)

pyright © 2014 John Wiley & Sons, Inc. hts opyright © 2014 John Wiley & Sons, Inc. All rights reserved.

In Fig. a, a battery B, a switch S, an uncharged capacitor C, and interconnecting wires form
a circuit. The same circuit is shown in the schematic diagram of Fig. b, in which the
symbols for a battery, a switch, and a capacitor represent those devices. The battery
maintains potential difference V between its terminals. The terminal of higher potential is
labeled + and is often called the positive terminal; the terminal of lower potential is
labeled - and is often called the negative terminal.
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25-2 Calculating the Capacitance

Calculating electric field and potential difference

To relate the electric field E between the plates of a capacitor to the charge g on
either plate, we shall use Gauss’ law:

E”% L:-dA=gq. We use Gauss' law to relate
q and E. Then we integrate the

the potential difference between the plates of a E to get the potential difference.

capacitor is related to the field E by

et
- : +q
-I_. Tty rBRt THlies N R =l =k N ek _J .
Vi— Vi = —J E-ds A% 1Yy yiy 7 y y y Gaussian
] ) g H surface
I - 8
|—- = = = \ [— »-‘
Letting V represent the difference V;- V;, Path of
e
we can then recast the above I
equation as: A charged parallel-plate capacitor. A
+ Gaussian surface encloses the charge
V= E ds on the positive plate. The integration

is taken along a path extending
directly from the negative plate to the
positive plate.
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25-2 Calculating the Capacitance
Parallel-Plate Capacitor

We assume, as Figure suggests, that the plates of our parallel-plate capacitor are so
large and so close together that we can neglect the fringing of the electric field at the
edges of the plates, taking E to be constant throughout the region between the
plates. We use Gauss' law to relate

q and E. Then we integrate the

We draw a Gaussian surface that encloses just 5 0ol the botantialdiieranse:
the charge g on the positive plate
= EEer it E ey
g = e,EA O VA I
_ dA3 vy Yy RERER Ga?”“‘m
where A is the area of the plate. And therefore, | | gl (O] ][] surace
V=| Eds=E| ds= Ed. o
- [5 Copyright © 2014 John Wiley & Sons, Inc. Al rights reserved. lrl[egratlox‘l
Now if we substitute g in the above A charged parallel-plate capacitor. A
relations to g=CV, we get, Gaussian surface encloses the charge

on the positive plate. The integration
A is taken along a path extending
C= (parallel-plate capacitor). directly from the negative plate to the
positive plate.
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25-2 Calculating the Capacitance
Cylindrical Capacitor

Figure shows, in cross section, a cylindrical capacitor of
length L formed by two coaxial cylinders of radii a and b. We
assume that L >> b so that we can neglect the fringing of the
electric field that occurs at the ends of the cylinders. Each
plate contains a charge of magnitude g. Here, charge and the
field magnitude E is related as follows,

q = e, EA = g E(27rL)
Solving for E field: ! oF(

+ q a dr q (bj
v=| Eds=- - In[ — )
f— ETTE(]L J; F ETT-E”L i a

From the relation C= g/V, we then have

C = ETTE,;] ]_I'_[

{cylindrical capacitor).

L
(bla)

PHY 201

Total charge +¢ Total charge —¢

‘ e — Gaussian
L Path of surface
integration

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

A cross section of a long
cylindrical capacitor, showing a
cylindrical Gaussian surface of
radius r (that encloses the
positive plate) and the radial path
of integration. This figure also
serves to illustrate a spherical
capacitor in a cross section
through its center.




25-2 Calculating the Capacitance

Others...

For spherical capacitor the capacitance is:

Total charge +¢ Total charge —¢

C = 4mg, (spherical capacitor).

b_

Capacitance of an isolated sphere:

C =4qe, R (isolated sphere).

— Gaussian

Path 0 7 surface

integration

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

A cross section of a long
cylindrical capacitor, showing a
cylindrical Gaussian surface of
radius r (that encloses the
positive plate) and the radial path
of integration. This figure also
serves to illustrate a spherical
capacitor in a cross section
through its center.
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Capacitors in Parallel

Terminal
j 43 49 4
+ L = -
% fv

B=V - =
-L —q3]|Cq —92|1Cs —N1|C

Terminal

<
|
!

V=V,=V,=V,
q=q; T q; T q;
Co=L =g +G+C
' V | 2 s

Fl
Ceq = E C; (ncapacitors in parallel).
i=1

Capacitors in Series

</—Terminal
+tq
A=
ST
! |
\+(] |
i AN, B
—-q C2
*tq
Vsl ——
5y £ ds
KTcrminal
(a)
qd=9:=9,=q3
V=V, +V,+V,
1 1 1 1
C'TEI Cr] 1
1 L | o _
= E —  (mcapacitors in series).
CL‘,q J|'='|_ C_I'
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25-3 Capacitors in Parallel and in Series

Capacitors in Parallel

When a potential difference V' is applied across several capacitors connected in
parallel, that potential difference V is applied across each capacitor. The total

A
X

charge g stored on the capacitors is the sum of the charpes stored on all the capacitors.

g1 = C! V., i = CEV, and i C}V.
The total charge on the parallel combination of Fig. 25-8a 1s then
g=q+q+q:=(C+ G+ GV,

The equivalent capacitance, with the same total charge g and applied potential
difference V as the combination, is then

4q
|4

a result that we can easily extend to any number »n of capacitors, as

q =

Cl: =C1+C2+CJ!

Fl
Coq = E C;  (ncapacitors in parallel).
i=1

r_

(o)
N _
.y

Capacitors connected in parallel can be replaced with an equivalent capacitor that has
the same tofal charpe g and the same potential difference V as the actual capacitors.

PHY 201

7)

Terminal

1
L

43

Vv

rvm—

~q3]Cq

tv

49

=92

v
T3

Terminal

Parallel capacitors and
their equivalent have
the same V (“par-V").

G

* = ="~ 1John Wiley & Sons, Inc. All rights reserved.




25-3 Capacitors in Parallel and in Series

Capacitors in Series

When a potential difference V'is applied across several capacitors connected in
series, the capacitors have identical charge g. The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

A
X

/— Terminal

q q q
Vi=-—" WV=-—"- and ¥V,=-—"- +q
G G & =N
The total potential difference V due to the battery is the sum ! 71 i
| |
1 1 1 + |
= = —_— — — B==vV =
V=V +K+¥ Q(CL+CZ+C3)' = T
The equivalent capacitance is then .
1 i) =
Coy =L = : ~q[c,
V UG + UG + 1/G N
1 1 1 1 Termyal Series capacitors and
or c. ?] + E + G- (@) their equivalent have
= : the same q (“seri-q").
n 1 J_ 4
2 —  (ncapacitors In series) T -qc
qu i=1 C ]- N

I

L Y
'#‘ Capacitors that are connected in series can be replaced with an equivalent capaci-
tor that has the same charge g and the same rfofal potential difference V as the
actual series capacitors.

(0)

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
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25-4 Energy Stored in an Electric Field

The electric potential energy U of a charged capacitor,

U =——(potential energy).
and,

U= %CVE (potential energy).

is equal to the work required to charge the capacitor. This energy can be associated
with the capacitor’s electric field E.

A

Y

The potential energy of a charged capacitor may be viewed as being stored in the
electric field between its plates.

Every electric field, in a capacitor or from any other source, has an associated stored
energy. In vacuum, the energy density u (potential energy per unit volume) in a field
of magnitude E is

U= %EUEE (energy density).
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25-5 Capacitor with a Dielectric

= Adielectric material (dielectric for short) is an electrical
insulator that can be polarized by an applied electric field.
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25-5 Capacitor with a Dielectric

If the space between the plates of a capacitor is completely filled with a dielectric material,
the capacitance Cin vacuum (or, effectively, in air) is multiplied by the material’s dielectric
constant «, (Greek kappa) which is a number greater than 1.

A
B ‘J In a region completely filled by a dielectric material of dielectric constant «, all
C = kC airl electrostatic equations containing the permittivity constant g; are to be modified
by replacing g, with ke,

+ =+ + + 4+ H+ ++ ok

o ‘I8 = -|B

V=a constant

(a)

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
(a)If the potential difference between the
plates of a capacitor is maintained, as by the
presence of battery B, the effect of a
dielectric is to increase the charge on the
plates.

¢g=a constant

(b)

(b) If the charge on the capacitor plates is
maintained, as in this case by isolating the capacitor,
the effect of a dielectric is to reduce the potential
difference between the plates. The scale shown is
that of a potentiometer, a device used to measure
potential difference (here, between the plates). A
capacitor cannot discharge through a potentiometer.
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25-5 Capacitor with a Dielectric

Some Properties of Dielectrics
A%

Dielectric  Dielectric "' In a region completely filled by a dielectric material of dielectric constant «, all
Constant St rengt h electrostatic equations containing the permittivity constant & are to be modified

Material K (kV/mm) Pyrepiaciog s FaR Ks,
Air (1 atm) 1.00054 3
Polystyrene 2.6 24 = The magnitude of the electric field
Paper 35 16 . .
Transformer producgd .by .a point ch.arge |n.s!de a

oil 4.5 dielectric is given by this modified form of:
Pyrex 4.7 14
Ruby mica 54 1 q
Porcelain 6.5 E = 2
Silicon 12 dmrkey 1
Germanium 16
Ethanol 25
Water (20°C) 804
Water (25°C)  78.5 = Because k is always greater than unity,
Titaniz .

'C::.',l'mic 130 both these equations show that for a
Strontium fixed distribution of charges, the effect of

titanate 310 8 a dielectric is to weaken the electric field

For a vacuum, x = unity. that would otherwise be present.

“Measured at room temperature, except for the water.
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25-5 Capacitor with a Dielectric

An Atomic View

= Polar dielectrics: The molecules of some dielectrics, like water, have
permanent electric dipole moments. In such materials (called polar dielectrics),
the electric dipoles tend to line up with an external electric field

= Nonpolar dielectrics: Regardless of whether they have permanent electric
dipole moments, molecules acquire dipole moments by induction when placed
in an external electric field.

Thus, the effect of both polar and nonpolar dielectrics is to weaken any applied
field within them, as between the plates of a capacitor.
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25-5 Capacitor with a Dielectric
An Atomic View
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(a) Molecules with a permanent electric
dipole moment, showing their random
orientation in the absence of an external
electric field.

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

(b) An electric field is applied,
producing partial alignment of the
dipoles. Thermal agitation prevents
complete alignment.

The initial electric field The applied field The field of the aligned
inside this nonpolar aligns the atomic atoms is opposite the
dielectric slab is zero. dipole moments. applied field.
@ PP
Nonpolar ' DD
Dielectrics I

(a) ()

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
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25-6 Dielectrics and Gauss’ Law

* Inserting a dielectric into a capacitor causes induced charge to appear on the faces of
the dielectric and weakens the electric field between the plates.
* The induced charge is less than the free charge on the plates.

When a dielectric is present, Gauss’ law may be generalized to
£ % kE+dA = g (Gauss' law with dielectric).

where q is the free charge. Any induced surface charge is accounted for by including the
dielectric constant k inside the integral.

/'Gaussian surface [Gaussian surface +q

Note: , ‘

The flux integral now involves kE, not just | ‘ -

E. The vector g,kE is sometimes called » K 4
) ) + + o+ o+ o+

the electric displacement D, so that the i

above equation can be written in the . - &

form

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

A parallel-plate capacitor (a) without and (b) with a
§ D-dA = q. dielectric slab inserted. The charge g on the plates is
assumed to be the same in both cases.
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25 Summary

Capacitor and Capacitance Capacitor in parallel and series
* The capacitance of a capacitor is * In parallel:
defined as: .
=2 C Eq. 25-19
g=CV Eq. 25-1 . o
* In series
Determining Capacitance -3 L Eq. 25-20
* Parallel-plate capacitor: CW- =16
=l Eq. 25-9
d Potential Energy and Energy Density
* Cylindrical Capacitor: * Electric Potential Energy (U):
L
C = 2me, D" Eq. 25-14 2
U= =10V Eq. 25-21822
* Spherical Capacitor: * Energy density (u)
ab
C = dmey——. Eq. 25-17
* |solated sphere: u = e, E% Eq. 25-25
C = 4me,R. Eq. 25-18
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25 Summary

Capacitance with a Dielectric Gauss’ Law with a Dielectric
* If the space between the plates of a * When a dielectric is present, Gauss’
capacitor is completely filled with a law may be generalized to

dielectric material, the capacitance Cis
increased by a factor k, called the
dielectric constant, which is
characteristic of the material.

Eq ff; kE-dA = q. Eqg. 25-36
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