\qquad

PROB-1

For the beam shown below, draw the moment and shear diagrams.

PROB-2

At $20^{\circ} \mathrm{C}$ there is a gap $\Delta=0.4 \mathrm{~mm}$ between the ends of the aluminum and magnesium bars shown in Figure. Use $E a=70 \mathrm{GPa}$. $\dot{\alpha} a=23 \times 10^{-6} /{ }^{\circ} \mathrm{C}$, $A a=500 \mathrm{~mm}^{2}, E m=45 \mathrm{GPa}$, व́ $\mathrm{Cm}=26 \times 10^{-6} /{ }^{\circ} \mathrm{C}$, and $\mathrm{Am}=1200 \mathrm{~mm}^{2}$. Determine (a) the compressive stress in each rod when the temperature rises to $120^{\circ} \mathrm{C}$ and (b) the change in length of the magnesium bar.

PROB-3

PROB-4

Two plates are joined by four rivets of $20-\mathrm{mm}$ diameter, as shown in Figure. Determine the maximum load P if the shearing, tensile, and bearing stresses are limited to 80,100 , and 140 MPa , respectively. Assume that the load is equally divided among the rivets.

Determine: a) the largest shearing stress in the shaft. b) the angle of rotation in degrees at F. Given $\mathrm{G}=80 \mathrm{G} \mathrm{Pa}$

Determine the value of load P so that the maximum allowable stresses does not exceed 40 M Pa in tension, 70 M Pa in compression, and 12 M Pa in shear.

PROB-6-
Determine the stress in members FE, BD, and BC of the truss shown below. Given: $\mathrm{A}=5000 \mathrm{~mm}^{2}$.

PROB-7-

A 2 inch diameter and 4 inch long solid cylinder is subjected to uniform axial stress of 7.2 Ksi . Use $\mathrm{E}=30 \times 10^{3} \mathrm{Ksi}$ and $v=1 / 3$. Calculate: a) the change in length, b) the change in diameter.

PROB-8

For the stress state shown to the left, determine the normal and shearing stresses for the shaded area using the method of equilibrium.

PROB-9

Draw the moment and shear diagrams for the beam shown below.

PROB-10

Loads $\mathrm{P}=1200 \mathrm{~N}$ and $\mathrm{R}=2400 \mathrm{~N}$ are applied at the free end of the 50 mm diameter post shown. Determine the stress state at point A and draw the stress element. Solve the problem by looking at point A from the top side

EQUATIONS:
$\varepsilon=\delta / L ; \sigma=P / A ; \sigma=\mathrm{E} \varepsilon ; \delta=\Sigma\left(\mathrm{P}_{\mathrm{i}} \mathrm{L}_{\mathrm{i}}\right) /\left(\mathrm{A}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}\right) ; \tau=(\mathrm{VQ}) /(\mathrm{It}) ; \bar{y}=\frac{4 R}{3 \pi} ; I=\frac{\pi R^{4}}{4}$;
$\mathrm{q}=(\mathrm{VQ}) / \mathrm{I} ; \sigma=-(\mathrm{My}) / \mathrm{I} ; \mathrm{Fn}=\mathrm{qs} ; \tau=(\mathrm{Tr}) / \mathrm{J} ; \mathrm{A}=\mathrm{bh} ; \mathrm{A}=\mathrm{bh} / 2 ; \mathrm{A}=\pi \mathrm{R}^{2}$; $\mathrm{I}=\mathrm{bh}^{3} / 12 ; \mathrm{J}=\pi / 2\left(\mathrm{R}_{\circ}{ }^{4}-\mathrm{R}_{\mathrm{i}}{ }^{4}\right) ; \mathrm{I}=\pi / 4\left(\mathrm{R}^{4}{ }^{4}-\mathrm{R}_{\mathrm{i}}{ }^{4}\right) ; \varepsilon=\alpha \Delta \mathrm{T} ; \mathrm{Q}=\Sigma \mathrm{A}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}$; $d_{i}=\left|Y_{i}-Y_{c}\right| \quad ; \quad Y_{c}=\left(\Sigma A_{i} Y_{i}\right) /\left(\Sigma A_{i}\right) ; \phi=\Sigma\left(T_{i} L_{i}\right) /\left(J_{i} G_{i}\right)$;
$I_{c}=\Sigma\left(I_{o i}+A_{i} d_{i}{ }^{2}\right) ; d V / d x=-w(x) ; d M / d x=V ; d^{2} y / d x^{2}=M / E I$

