MATHEMATICS 218 SPRING SEMESTER 2008-09 FINAL EXAMINATION

Time: 120 minutes	Date:	June 3, 2009
Name:		
ID Number:		

Circle your section number in the table below:

Instructors	Ejeili	Fuleihan	Itani	Karam	El Khoury	Lyzzaik	Nassif	Tannous
Section	7	3	11	1	10	6	2	4
Section		5		12		8	9	

QUESTION	GRADE
1	/25
2	/20
3	/20
4	/20
5	/20
6	/20
7	/20
8	/25
9	/30
TOTAL GRADE	/200

Answer the following nine sets of questions on the allocated pages; the back of pages may be used if needed

1. Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ the transformation defined by

$$T(x, y, z, w) = (x + y - z + w, 2x + y + 4z + w, 3x + y + 9z).$$

- (a) Show that T is a linear transformation. (4 points)
- (b) Find the standard matrix [T]. (5 points)
- (c) Find bases for the kernel of and range of T. (12 points)
- (d) Find the rank and nullity of T. (4 points)

2. Let $T:P_2 \to \mathbb{R}^3$ be the function defined by the formula

$$T(\mathbf{p}(x)) = \begin{bmatrix} \mathbf{p}(1) \\ \mathbf{p}(2) \\ \mathbf{p}(3) \end{bmatrix};$$

here P_2 is the vector space of all real polynomials of degree at most 2.

(a) Show that T is a linear transformation.

(8 points)

(b) Show that T is one-to-one.

(8 points)

(c) Show that T is onto.

(4 points)

3. Let P_3 be the set of all polynomials of degree at most 3, and let

$$W = \{ax^3 + bx^2 + cx + d : b + c + d = 0\}.$$

- (a) Show that W is a subspace of P_3 . (6 points)
- (b) Find a basis S for W.

(6 points)

(c) Give one vector in P_3 but not in W.

(2 points)

(d) Complete S to a basis for P_3 .

(6 points)

4. Let

$$A = \left[\begin{array}{rrrr} 1 & 3 & 5 & 7 \\ 2 & 0 & 4 & 2 \\ 3 & 2 & 8 & 7 \end{array} \right]$$

- 4. Let $A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 2 & 0 & 4 & 2 \\ 3 & 2 & 8 & 7 \end{bmatrix}$ (a) Find a basis for the row space of A and a basis for its orthogonal (16 points) complement.
- (b) Find a subset of the column vectors of A that forms a basis for the column space of A. (4 points)

5. Let P_2 be the set of all polynomials of degree at most 2, and let $\mathbf{p}(x) = a_0 + a_1 x + a_2 x^2$ and $\mathbf{q}(x) = b_0 + b_1 x + b_2 x^2$ be in P_2 . Define on P_2 the operation

$$<\mathbf{p},\mathbf{q}>=a_0b_0+2a_1b_1+3a_2b_2.$$

- (a) Show that $\langle .,. \rangle$ is an inner product on P_2 . (10 points)
- (b) Show that

$$(a_0b_0 + 2a_1b_1 + 3a_2b_2)^2 \le (a_0^2 + 2a_1^2 + 3a_2^2)(b_0^2 + 2b_1^2 + 3b_2^2).$$

(5 points)

(c) Determine the cosine of the angle between the polynomials

$$1 + x - x^2$$
 and $1 - x + x^2$.

(5 points)

. .

10

6. Let

$$A = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \end{array} \right].$$

- (a) Use the Gram-Schmidt process to transform the column vectors of A to an orthonormal basis of \mathbb{R}^3 . (14 points)
 - (b) Find the QR-decomposition of A.

(6 points)

$$A = \begin{bmatrix} -2 & 3 \\ 1 & -2 \\ 1 & -1 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}.$$

- (a) Find the least squares solution of the linear system $A\mathbf{x} = \mathbf{b}$. (16 points)
- (b) Find the orthogonal projection of **b** on the column space of A. (4 points)

8. Let

$$A = \left[\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right].$$

(a) Find the eigenvalues of A.

(a) Find the eigenvalues of A. (5 points) (b) Show that A is diagonalizable. (10 points) (c) Find a matrix P that diagonalizes A and determine $P^{-1}AP$.

(5 points)

(d) Determine A^{10} .

(5 points)

- 9. Indicate whether each of the following statements is TRUE (T) or FALSE (F) without justifying your answer. (3 points each)
 - —(a) If A is an $n \times n$ matrix that satisfies $AA^T = I$, then $\det(A) = 1$.
 - —(b) If $A^2 = A$ and λ is an eigenvalue of A, then $\lambda = 0$ or $\lambda = 1$.
- —-(c) If A is an $n \times n$ matrix invertible matrix, then the orthogonal complement of its nullspace is \mathbb{R}^n .
- —-(d) A square matrix is diagonalizable if and only if $\lambda=0$ is an eigenvalue.
 - —(e) Any linear system $A\mathbf{x} = \mathbf{b}$ satisfies rank $[A|\mathbf{b}] = \text{rank}(A)$.
- —-(f) Any matrix A can be expressed as a product of elementary matrices.
- —-(g) If dim V < dim W < ∞ , then there exists a one-to-one linear transformation $T: V \to W$.
- —-(h) If a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}$ satisfies $T(2, -1) \neq 0$, then it is onto.
 - —-(i) The dimension of the vector space of 3×3 matrices is 10.
- —-(j) If A is an $m \times n$ matrix, then $A^T A$ is invertible if and only if the set of column vectors of A is linearly independent.