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1. Let T : R* — R? the transformation defined by
T(z,y,z,w)=(z+y—z+w,2x+y+4z+w,3z+y+92).

(a) Show that T is a linear transformation. (4 points)

(b) Find the standard matrix [T7]. (5 points)

(c) Find bases for the kernel of and range of T. (12 points)

(d) Find the rank and nullity of 7. (4 points)






2. Let T': P, — R3 be the function defined by the formula

p(1)
T(p(x)) = | P(2) |;
P(3)
here P, is the vector space of all real polynomials of degree at most 2.
(a) Show that T is a linear transformation. (8 points)
(b) Show that 7' is one-to-one. (8 points)
(c) Show that T is onto. (4 points)






3. Let P; be the set of all polynomials of degree at most 3, and let

W = {az’ +bx*+ cx+d:b+c+d=0}.
(a) Show that W is a subspace of P;.
(b) Find a basis S for W.

(¢) Give one vector in P; but not in W.
(d) Complete S to a basis for Pj.

(6 points)
(6 points)
(2 points)
(6 points)






8
4. Let
1357
A=12 0 4 2
3 287
(a) Find a basis for the row space of A and a basis for its orthogonal
complement. (16 points)

(b) Find a subset of the column vectors of A that forms a basis for
the column space of A. (4 points)



9

5. Let P, be the set of all polynomials of degree at most 2, and let
p(z) = ap + a1z + axz? and q(x) = by + byz + bez? be in P,. Define on
P, the operation

<p,q>= aoby + 2a1b1 + 3aqbs.

(a) Show that < .,. > is an inner product on P;. (10 points)
(b) Show that

(apbo + 2a1b;y + 3aghy)? < (a + 2a2 4 3a2) (b2 + 2b2 + 3b2).

(5 points)
(c) Determine the cosine of the angle between the polynomials

l1+z—2% and 1-z+ 2%

(5 points)
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6. Let
1 0 2
A=]10 1 11.
120
(a) Use the Gram-Schmidt process to transform the column vectors
of A to an orthonormal basis of R?. (14 points)

(b) Find the QR-decomposition of A. (6 points)
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7. Let
A=

-2 3 1
1 -2 and b=] -1 j.
1 -1 2

(a) Find the least squares solution of the linear system Ax = b.
(16 points)
(b) Find the orthogonal projection of b on the column space of A.
(4 points)
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8. Let
011
A=1{1 01 /.
110
(a) Find the eigenvalues of A. ( 5 points)
(b) Show that A is diagonalizable. (10 points)
(c) Find a matrix P that diagonalizes A and determine P71 AP.

(5 points)
(d) Determine A, (5 points)
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9. Indicate whether each of the following statements is TRUE (T)
or FALSE (F) without justifying your answer. (3 points each)

—-(a) If Ais an nxn matrix that satisfies AAT = I, then det(A) = 1.
—(b) If A% = A and ) is an eigenvalue of A, then A =0 or A = 1.

—-(c) If A is an n x n matrix invertible matrix, then the orthogonal
complement of its nullspace is R™.

—-(d) A square matrix is diagonalizable if and only if A = 0 is an
eigenvalue.

—-(e) Any linear system Ax = b satisfies rank[A|b] = rank(A).

—-(f) Any matrix A can be expressed as a product of elementary
matrices.

—-(g) If dim V < dim W < 0o, then there exists a one-to-one linear
transformation T': V — W.

—-(h) If a linear transformation 7' : R? — R satisfics T(2, —1) # 0,
then it is onto.

——(i) The dimension of the vector space of 3 x 3 matrices is 10.

—-(j) If A is an m x n matrix, then ATA is invertible if and only if
the set of column vectors of A is linearly independent.



