
1

LEBANESE AMERICAN UNIVERSITY
School of Arts and Science

Department of Computer Science and Mathematics
CSC 310: Algorithms and Data Structures

Lab 2

Implement the class AVLNode which represents an AVL tree node having an integer value, integer
height and references to the left child and right child, as well as a constructor that takes an integer as
argument. Using AVLNode, implement the class AVL representing an AVL tree.

In the AVL class, implement the insert method, which takes as input an integer value and adds it to the
tree maintaining the AVL property of the tree by doing the right rotations (for every node, require
heights of left & right children to differ by at most +1 or -1).

 Problem 1 - AVL insert & sort:

Given a sequence of integers, insert them into the constructed AVL tree maintaining the AVL property
of the tree by using rotations (for every node, require heights of left & right children to differ by at
most +1 or -1), then print the constructed AVL tree using in-order traversal.

The first line of input is an integer T representing the number of test cases. Each test case is made up of
an integer N representing the number of nodes in the tree followed by N integers representing the
values to insert.

Sample Input Sample Output

3

7 25 13 10 30 8 27 37 8 10 13 25 27 30 37

4 5 6 8 7 4 4 5 6 7 8

6 10 7 15 13 4 6 4 6 7 10 13 15

 Problem 2 – Merge Sort:

Given an array of integers, write a program that sorts the array using Merge Sort.

Sample Input Sample Output

7

12 700 9 156 34 -732 237 -732 9 12 34 156 237 700

2

 Problem 3 – Quick Sort:

Given an array of integers, write a program that sorts the array using the Quick Sort algorithm covered
in class (pivot is first element of array/subarray).

Sample Input Sample Output
7

12 700 9 156 34 -732 237 -732 9 12 34 156 237 700

 Problem 4 – Heap Sort:

Given an array of integers, write a program that sorts the array using the Heap Sort algorithm using
max heap. You should implement the MaxHeapify and sort in a MaxHeap class.

Sample Input Sample Output
6

12 11 13 5 6 7 5 6 7 11 12 13

 Problem 5 - Hybrid Merge/Insertion Sort:

Write a program that sorts the array using Merge Sort. But whenever the length of the (sub)array
becomes less than a user-defined threshold (part of the input), use Insertion Sort to sort the (sub)array.

Sample Input Sample Output
9 5

12 700 9 156 34 -732 237 1 2 -732 1 2 9 12 34 156 237 700

3

 Problem 6 – Homework:

This is a homework assignment. You are asked to run a race among four different sorting algorithms:
the above three sorting algorithms (Merge Sort, Quick Sort, heap sort, and insertion sort). Test which
one is faster on different (very large) array sizes, and submit a report by e-mail about the results of your
race, and the randomly generated lists and the code by Friday, 12:00 PM.
In your report, the final race output should be plotted graphically (plot the average time per test size per

algorithm).

For the race, generate random lists of integers (open range for the values) of size 100 to 108, as follows:

100 lists of size 100

100 lists of size 1000

1000 lists of size 10000

Etc…

