
LEBANESE AMERICAN UNIVERSITY

School of Arts and Science

Department of Computer Science and Mathematics

CSC 310: Algorithms and Data Structures

Lab III
05. Feb. 2016

Implement the class RBNode which represents a binary tree node having an integer value,

references to the parent, left child, and right child, and the color. Using RBNode, implement the

class RBTree representing a Red-Black tree that will be composed of multiple RBNodes.

In the RBTree class, implement the insert method, which takes as input an integer value and adds

it to the tree maintaining the Red-Black tree structure and properties. Use the pseudocode

provided to implement the insert and rotation methods.

The Red-Black Tree properties are as follows:

1. Every node is either red or black.

2. The root is black.

3. Every null node is black.

4. If a node is red, then both its children are black.

5. For each node, all simple paths from the node to descendant leaves contain the same

number of black nodes.

Pseudocodes

LEFT-ROTATE(RBNode x)

1. y = x.right

2. x.right = y.left // turn y’s left subtree into x’s right subtree

3. if y.left != y.left

4. y.left.parent = x

5. y.parent = x.parent

6. if x.parent == null

7. root = y

8. else if x == x.parent.left

9. x.parent.left = y

10. else x.parent.right = y

11. y.left = x

12. x.parent = y

INSERT(int value)

1. z = new RBNode(value)

2. y = null

3. x = root

4. while x != null

5. y = x

6. if z.value < x.value

7. x = x.left

8. else x = x.right

9. z.parent = y

10. if y == null

11. root = z

12. else if z.value < y.value

13. y.left = z

14. else y.right = z

15. while z.parent.color == RED

16. if z.parent == z.parent.parent.left

17. y = z.parent.parent.right

18. if y.color == RED

19. z.parent.color = BLACK

20. y.color = BLACK

21. z.parent.parent.color = RED

22. z = z.parent.parent

23. else
24. if z == z.parent.right

25. z = z.parent

26. LEFT-ROTATE(z.parent.parent)

27. z.parent.color = BLACK

28. z.parent.parent.color = RED

29. RIGHT-ROTATE(z.parent.parent)

30. else
31. // same as above but replace left with right and vice versa

32. root.color = BLACK

Problem 1

Given a sequence of integers, insert them into a Red-Black tree then print the tree using pre-

order traversal.

Input

Your program will be tested against multiple test cases. Each test case is made up of two lines.

The first line contains an integer N representing the number of integers. The second line has N

integers to be inserted into the tree.

Output

For each test case, print the tree using pre-order traversal.

Sample Input Sample Output

7

25 13 10 30 15 27 37

4

6 7 8 9

6

10 7 15 13 4 6

13 10 25 15 30 27 37

7 6 8 9

10 6 4 7 15 13

Problem 2

Given a sequence of integers, insert them into a Red-Black tree then print the height of the tree.

Input

Your program will be tested against multiple test cases. Each test case is made up of two lines.

The first line contains an integer N representing the number of integers. The second line has N

integers to be inserted into the tree.

Output

For each test case, print the height of the tree.

Sample Input Sample Output

7

25 13 10 30 15 27 37

4

6 7 8 9

6

10 7 15 13 4 6

3

2

2

