
Linked Lists

Computer Programming II
Profs. H. Harmanani and W. Keirouz

Lebanese American University
Byblos

2H. Harmanani

Linked List Manipulation

■ Need techniques for carrying out computations on an entire
list

• Computing the number of nodes in a list
• General Linked List traversal

• Finding a Node in a Linked List
• Copying a Linked List

■ A major application for a linked list is a dynamic
implementation of the Bag ADT

• We briefly look at the Dynamic Bag ADT.

3H. Harmanani

listLength Method – Specification

■ Specification
• Computes the number of nodes in a linked list

■ Parameter
• head, a reference to the head node of the list (maybe empty)

■ Return Value
• listLength returns an integer that is equal to the number of

nodes in the list.
• The number of nodes must be less than Integer.MAX_VALUE .

■ Note that listLength must be a static method
• It is not activated by any one node.
• It is rather activated by IntNode.listLength

■ Any ideas why?

4H. Harmanani

listLength Method – Specification

■ An ordinary method is activated by the head node of a list
• It is easier however a static method is better since it can be used

even with an empty list

• The following code segment creates an empty list and then print its
length

IntNode empty = null;
System.out.println(IntNode.listLength(empty);

5H. Harmanani

listLength Method – Implementation

■ The implementation uses a reference variable, cursor, that
steps through the nodes of the list one at a time

■ The algorithm can be summarized as follows:
• Initialize a variable, length, that keeps track of the number of nodes

• Make cursor refer to each node of the list, starting at the head node.
Each time cursor moves, increment length

• Once cursor becomes null, the method returns length
■ What kind of variables will length and cursor be?

6H. Harmanani

listLength Method – Implementation

public static int listLength(IntNode head)
{

IntNode cursor;
int length;

length = 0;
for (cursor = head; cursor != null;

cursor = cursor.link)
length++;

return(length);

}

7H. Harmanani

Linked List Traversal – General Notes

■ The pattern that is used to traverse a linked list is the always
the same and will be used throughout this course

• Start with a node, say cursor

• cursor.link refers to the next node

■ To move cursor to the next node, need to advance the
reference one node further

• Use cursor = cursor.link or
cursor = cursor.getLink();

■ If there is no next node, cursor will become null

8H. Harmanani

listSearch Method – Specification

■ Prototype
• public static IntNode listSearch

(IntNode head, int target)

■ Specification
• Traverse a linked list searching for an element and returns a

reference to the node that contains that element

■ Parameters
• head – the head reference for a linked list (maybe empty)
• target – a piece of data to search for

■ Returns
• A reference to the first node that contains the specified target. If

there is no such node, the null reference is returned

9H. Harmanani

listSearch Method – Implementation

■ The method should return a reference to a node in a linked
list that contains a certain parameter, say target

■ If target does not appear in the list, the method should
return a certain value that indicates this fact, say null

■ The algorithm is then trivial
• Traverse the list using the usual list traversal pattern that we just

described, using a local variable cursor

• At every node of the list, we test for if we have found the element.

• If so, return immediately. Otherwise, step through the next node

10H. Harmanani

listSearch Method – Implementation

public static IntNode listSearch(IntNode head, int target)
{

IntNode cursor;

for (cursor = head; cursor != null; cursor = cursor.link)
if (target == cursor.data)

return cursor;
return null;

}

11H. Harmanani

listPosition Method – Specification

■ Prototype
• public static IntNode listPosition

(IntNode head, int position)

■ Specification
• Finds a node in a linked list by its position

■ Parameters
• head – the head reference for a linked list (maybe empty)
• position – a node number

■ Returns
• A reference to the node specified position in the list. If there is no

such position, returns null

■ Throws
• IllegalArgumentException – Indicates that position is not

positive

12H. Harmanani

listPosition Method – Implementation

public static IntNode listPosition(IntNode head, int position)
{

IntNode cursor;
int i;

if (position <= 0)
throw new IllegalArgumentException

("Position is not Positive");

cursor = head;
for (i = 0; (i < position) && (cursor != null); i++)

cursor = cursor.link

return cursor;
}

13H. Harmanani

listCopy Method – Specification

■ Prototype
• public static IntNode listCopy(IntNode source)

■ Specification
• Copy a list

■ Parameter
• source – the head reference for a linked list that will be copied

■ Returns
• A copy of the linked list starting at source . Return value is the

head reference for the copy

■ Throws
• OutOfMemoryError – Indicates that there is insufficient memory

for the new list

14H. Harmanani

listCopy Method – Implementation

■ Creates a completely separate copy of a linked list while the
initial list remains intact

■ Need two references that will be maintained as the head and
tail references for the new list

• Creates a new head node of the new list. Tail and Head refer to
this node

• Make original list now refer to the second node. Add one node to
the tail of the new list and move the tail forward.

• Repeat above step until all nodes in the original list have been
tarversed

15H. Harmanani

listCopy Method – Implementation

public static IntNode listCopy(IntNode source)

{

IntNode copyHead, copyTail;

if (source == null)

return null;

copyHead = new IntNode(source.data, null);

copyTail = copyHead;

while (source.link != null) {

source = source.link;

copyTail.addNodeAfter(source.data);

copyTail = copyTail.link;

}

return copyHead;

}

16H. Harmanani

listCopyWithTail Method – Specification

■ Prototype
• public static IntNode[] listCopyWithTail

(IntNode source)

■ Specification
• Copy a list, returning both a head and a tail reference

■ Parameter
• source – the head reference for a linked list that will be copied

■ Returns
• A copy of the linked list starting at source . Return value is an array

where [0] element is a head reference for the copy and the [1]
element is a tail reference for the copy

■ Throws
• OutOfMemoryError – Indicates that there is insufficient memory for

the new list

17H. Harmanani

listCopyWithTail – Implementation

■ Makes a copy of a list with the difference is that it returns
two references, a head and a tail reference

• Return value is an array with two components
■ [0] component contains the head reference for the new list

■ [1] component contains the tail reference for the new list

■ A method can return an array
• Useful whenever we need to return more than one piece of

information

18H. Harmanani

listCopyWithTail – Implementation

public static IntNode[] listCopyWithTail(IntNode source)
{

IntNode copyHead, copyTail;
IntNode[] answer = new IntNode[2];

if (source == null) return answer;

copyHead = new IntNode(source.data, null);
copyTail = copyHead;
while (source.link != null) {

source = source.link;
copyTail.addNodeAfter(source.data);
copyTail = copyTail.link;

}

answer[0] = copyHead;
answer[1] = copyTail;
return answer;

}

19H. Harmanani

listPart Method – Specification

■ Prototype
• public static IntNode[] listPart(IntNode start, IntNode

end)

■ Specification
• Copy part of a linked list, providing head and tail reference for the new copy

■ Parameters
• start and end – references to two nodes of a linked list

■ Returns
• A copy of part of a linked list, from the specified start node to the specified

end node. Return value is an array where [0] component is a head reference
for the copy and the [1] component is a tail reference for the copy

• Throws – IllegalArgumentException (start and end do not satisfy the
precondition) and OutOfmemoryError (Indicates that there is insufficient
memory for the new list

20H. Harmanani

listPart Method – Implementation

public static IntNode[] listPart (IntNode start, IntNode end) {
IntNode copyHead, copyTail;
IntNode[] answer = new IntNode[2];
if (source == null)

throw new IllegalArgumentException("Start is null");
if (end == null)

throw new IllegalArgumentException("end is null");
copyHead = new IntNode(source.data, null);
copyTail = copyHead;
while (start != null) {

start = start.link;
if (start == null)

throw new IllegalArgumentException("end not found");
copyTail.addNodeAfter(start.data);
copyTail = copyTail.link;

}
answer[0] = copyHead; answer[1] = copyTail;
return answer;

}

21H. Harmanani

YABI: Yet Another Bag Implementation!

■ Can rewrite the Bag ADT using a linked list

■ See Code for example and difference with the static
approach

22H. Harmanani

remove method – Implementation

public boolean remove (int target)
{

IntNode targetNode;

targetNode = IntNode.listSearch(head, target);

if (targetNode == null)
return false;

else
{

targetNode.SetData(head.getData());
head = head.getLink();
manyNodes--;
return true;

}
}

23H. Harmanani

Grab method – Specification

■ Prototype
• public int grab ()

■ Specification
• Accessor method to retrieve a random element from this bag

■ Returns
• A randomly selected element from this bag

■ Throws
• IllegalStateException – Indicates that the bag is empty

24H. Harmanani

Grab method – Implementation

■ Generate a random number between 1 and the size of the
bag

• Use random() method that generates a random number between
0.0 and 1.0

■ Use the random value to select a node from the bag
• Use listPosition method

25H. Harmanani

Grab method – Implementation

public int grab()
{

IntNode cursor;
int i;

if (manyNodes == 0)
throw new IllegalStateException("Bag size is zero");

i = (int) (Math.random() * manyNodes) + 1;
cursor = IntNode.listPosition (head, i);

return cursor.getData();
}

