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Objects

Object Oriented Programming (OOP)

o An approach in which data occurs in tidy packages
called Objects.

o Objects are manipulated using functions called
methods which are part of their objects

Class

o Definition or template for objects (called instances)
Data members of an object.
Methods of an object.
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Abstract Data Types

Information Hiding

o An example of the separation of specification from
implementation

Abstract Data Type (ADT)
o Specification of a class’s interface.
a Class is an implementation of an ADT

We will present throughout this chapter two
examples of ADTs
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Class Members Example: Mechanical Throttle

A class is a new kind of data type Description _ _
. o A class that is used to store and manipulate the status of mechanical
A class includes throttle
o Data o Athrottle is a lever that can be moved to control fuel flow.
Integers, characters, floats, etc. Similar to a gas pedal.
o Methods Throttle Positions
Operations on objects. o Shutoff position

Allows no fuel flow.
o On positions
Flow proportional to lever location.

o Constructors
Initialize data of newly created objects.

o View class as an ADT Topmost position—maximum flow.
Can specify which members are visible to the outside. Initialization

Taken all together, the above elements constitute the 2 Number of positions

class members o Throttle @ shutoff position.
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Example: Mechanical Throttle... Example: Mechanical Throttle...

Constructor Defining New Class
o Creates new throttle with: )
One shutoff position & public class Throttle { o
A specified number of on positions. private int top; // topmost position of lever
private int position; // current position of
lever
Methods
o What is fuel flow? /I Implementations of constructors & methods
Proportion of maximum flow. /' go here
o Is throttle on? 3}

Return true/false based on state of throttle.

o Shift throttle by a given amount.
o Class header

o Move throttle back to shutoff position. . Instance variables
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Constructors

Instance variables initialized to Java’s default values.
o O for numbers, False for booleans, etc.

Declaration w/initialization overrides default values.
int step = 10;

Constructor's name must be class’s name.

A constructor does not have a return value.
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Example: Throttle Example...

Constructor—Specification
public Throttle(int size)
Construct a Throttle with a specified number of positions.

o Parameters
size—number of on positions for this new Throttle.

o Precondition
size > 0

o Postcondition
This Throttle has been initialized with the specified number of on
positions above the shutoff position, and is currently shut off.

o Throws: 11legalArgumentException
Indicates that size is not positive.
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Example: Mechanical Throttle...

Constructor—Implementation

public Throttle(int size)
{
if (size <= 0)
throw new
I11legalArgumentException(*'Size <= 0: " + size);
top = size;

// No assignment needed for position.
// default value is zero.

}
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No-Arguments Constructor

Does not need information to initialize data
members.

Automatically created by Java.
o When no other constructors defined!

Can be overridden by implementer.
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Methods

Accessor
o Gives info about object without altering it.
o Also called get-methods or getters.

Modifier
o May change object's state.

Methods implement operations on objects.
o Inspect & modify object's data members.
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Example: Mechanical Throttle...

Accessor Method—getFlow

public double getFlow()
Get the current flow of this Throttle.

o Returns

the current flow rate (always in the range [0.0 ... 1.0]) as a
proportion of the maximum flow.

public double getFlow()

{
return (double) position / (double) top;

}
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Example: Mechanical Throttle...

Accessor Method—isOn

public boolean isOn()
Check whether this Throttle is on.

o Returns

true if this Throttle's flow is above zero. Otherwise, return
false.

public boolean isOn()

{
return (getFlow() > 0);

// Equivalent to (position > 0)
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Example: Mechanical Throttle...

Modification Method—shutOff

public void shutOff()
Turn off this Throttle.

Postcondition:
This Throttle's flow has been shut off.

public void shutOff()
{

position = 0;

}
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Example: Mechanical Throttle...

Modification Method—shift

public void shift(int amount)
Move this Throttle's position up or down.

o Parameters

amount—amount to move position up or down (+ve for up, -ve
for down)

o Postcondition
This Throttle's position has been moved by specified amount.
Position always between zero & top position.
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Example: Mechanical Throttle...

Modification Method—shift...

public void shift(int amount)
{
if (amount > top — position)
// Adding amount puts position above top.
position = top;
else 1T (position + amount < 0)
// Adding amount puts position below zero.
position = O;
else
// Adding amount puts position in range [0..top]
position += amount;
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Using a Class

Creating Objects

Throttle control;
o control refers to an instance of class Throttle.

Initialized to nul I.

Cannot invoke any method on control yet.

new Throttle(100);
o Create a new Throttle object.
o Instance variable top initialized to 100.
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Using a Class

Creating Objects...

Throttle control = new Throttle(100);
Throttle control;
control = new Throttle(100);

o Equivalent sets of statements
o control refers to instance of Throttle.
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Using a Class... Using a Class...

Using Objects Example
control _shift(3); final int SIZE = 8; // Size of the Throttle.
control.isOn(); final int SPOT = 3; // Target of Throttle"s lever.
o Invoke methods shift and isOn on object that control refers Throttle small = new Throttle(SIZE);
to. :

small.shifTt(SPOT);
System.out.print

Method Call Components ('My small throttle is now at position™);

- (}Mectre&wence(e{},Control). System.out.printIn(SPOT + " out of " + SIZE + ".");
o Field selector operator () System.out.printIn("The flow is now: " +
o Method name (e.g., shift) small_getFlow());
o Parameter list
May be empty. My small throttle is now at position 3 out of 8.

The flow is now: 0.375.
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Using a Class... Reference Variable Assignment
Example—Multiple Instances of Same Class Code Example 1
Throttle tl1
Throttle tiny = new Throttle(4); Throttle t1;
Throttle huge = new Throttle(10000); Throttle t2;
tiny.shift(2); tl = new Throttle(100); Top 100
huge . shiFt(2500); g-fhgf(%); position ?7?

o Objects tiny & huge are instances of the class Throttle. t2.shift(-5);

Same methods. )
Different copies of instance variables. Aliases
o Refer to the same object.

Throttle t2
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Reference Variable Assignment...

Code Example 2

Throttle t1;
Throttle t2;

tl = new Throttle(100);
tl._shift(25);
t2 = new Throttle(100);
t2.shift(25);

true Expressions
o tl 1= €2
o tl.equals(t2)

Throttle t1

top 100
position 25

top 100

[::jij////’ position 25

Throttle t2
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Equality Test

(tl == t2)is true

Throttle tl1
Throttle t1;
Throttle t2;

tl = new Throttle(100);
tl_shift(25);
t2 = t1;

top 100
position 25

Variables refer to SAME

Object. Throttle t2

Objects and Data Abstraction (v1.05) 26

Equality Test...

(tl == t2)is false

Throttle t1;
Throttle t2;

tl = new Throttle(100);
tl._shift(25);
t2 = new Throttle(100);
t2.shift(25);

Variables do NOT refer to
SAME object.

Throttle t1

top 100
position 25

top 100

[::ji]////” position 25

Throttle t2
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Class Location—Specification

Constructor
public Location(double xInitial, double ylnitial)
o Constructs a Location with specified coordinates.

o Parameters
xInitial—the initial x coordinate of this Location.
yInitial—the initial y coordinate of this Location.

o Postcondition
This Location has been initialized at the given coordinates.

clone Method
public Object clone()
o Generate a copy of this Location.

o Returns
A copy of this Location. Changes to copy do not affect this Location.
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Class Location—Specification. ..

distance Method

public static double distance
(Location pl, Location p2)

o Compute the distance between two Locations.
o Parameters

pl—the first Location.

p2—the second Location.
o Returns

the distance between p1l and p2.

o Note

The answer is Double _.POSITIVE_INFINITY if the distance
calculations overflows. The answer is Double.NaN if either
Location is null.
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Class Location—Specification...

equals Method

public boolean equals(Object obj)
o Compare this Location with another object.

o Parameters
ob j—an object with which this Location is compared.

o Returns

true if obj refers to a Location with same value. Otherwise,
false.

o Note
The answer is false if obj is nul'l oris not a Location.
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Class Location—Specification. ..

midPoint Method

public static Location midPoint
(Location pl, Location p2)

o Generates & returns a Location halfway between two others.
u Parameters

pl—the first Location.

p2—the second Location.

o Returns
a Location that is halfway between pl and p2.

o Note
The answer is nul l if plorp2isnull.
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Class Location—Specification. ..

getX & getY Methods

public double getX() -and- public double
getYQO

o Get the x or y coordinate of this Location.

o Returns

the x or y coordinate of this Location.

rotate90 Method
public void rotate90()
o Rotate this Location 90° in a clockwise direction.

o Postcondition
This Location has been rotated clockwise 90° around the origin.

Objects and Data Abstraction (v1.05) 32




Class Location—Specification. ..

shift Method
public void shift(double xAmount, double yAmount)
o Move this Location by given amounts along x & y axes.
o Postcondition

This Location has been moved by given amounts along the two axes.
o Note

shift may cause a coordinate to go above Double .MAX_VALUE or below —
Double_MAX_VALUE. Subsequent calls to accessor return
Double.POSITIVE_INFINITY or Double NEGATIVE_INFINITY.

toString Method
public String toString()

T.ocation Class

e wdn ool ) -

Pl St L R L T T T e R T U SR R Y T
*+ & Looation object kesps track of s location on a two-dimsnsiooal
+ -
FL L Lt L L L T T T T T Y
publin alass Location implaments Clonssbhls
i
private doubls x; // Tha = oocordinate of this Loostion
private donbls y; f/ Tha y ooordinete of this Loomtion

Fil
Constront a Lecation with speaifisd occordinates.
Paramatars
xInttial
tha initial = coordinate of this Lomsticom
gInttial
tha initial ¥ coordinate of this Lomatic:m
Postaondition:
Thiz Ioocation has besn initialized at the given cooxdinatas.

L L NN

o Generate a string representation of this Location. */
public Location {doubhle xInitial, doubls yIndtial)
o Returns {
a string representation of this Location. = = xInitlal;
¥ = yInitial;
}
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Fil
i * Compute the dist bk two Locatd
* ganarate a copy of this Location. * Paranshbors
* Parammbars - Done * pl - tha First Looakien
+* Returns * npd - the second Location
* The retun value isx =u copy of this L = | Subwag * Beturns
* changes to the copy will not affect the origioal, Dor vice wverss. * the distanos betwsen pl and p2
+* Hots that the return valus must be typecast to a * Hobe
*  Location hefors it can be - * The snswer is Double.POSIYIVE INFIMITY if the distance calculation
t} *  opyexflows. The answer is Double.MaM if sither Locatiom is zmuall.
publin Ohjact clonai ) ®f
{ // Clona a Location objent. poblicz tic double dist {Location pl, L tion p2)
Iocation snewsr: {

txy {
answer = ([Location) super.clooe( );
}
ocateh {(ClonaifotSnpportedBvcaption a) {
{// BExvaption should not ocemr. But iF it doas, it wonld
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dovble a, b, o sguared;

ff# Check whether om= of the locations is muoll.
if ((pl == gull) || (P2 == =ull))
return Dooble . Hal;

ff Caloulate differences in x and y coordinates.
a=pl.x - p2.8;
b =pl.y - p2.¥;

// Use Bythag T
11 harts the losations.
c squared = ata + bih;

to calemiabe the square of the distanos.

return Math.sqgrt(o_squared) ;
|3
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o,
L]

Compare this Locatiosn to another object for equality.
Parameters

ab)

an obhject with which this Location will ba compared
Baturns

A rotuorn valne of tros indicatas that

ol rafors to a

Location object with the same valos as this
Logation. Otherwise the return wvaloe is

falsa.
Hote:

If ab} is mall or doas not refar to a
Location object, then the answer is falseo.

{.'!!......lﬂilﬂ

public boolsan equals (Object obj)
{
if {eb] instamosef Location)
{
Location cendidate = {Locatiom) obj;
return (candidate.z — =) &6 (candidate.y — ¥);

3
else
return false;

* et the x coordinate of this Location.
+ Parsmsters - Done
t Returns
t  the = coordinate of this Location.
*f

publis douvhle gatX( )

i

ratarn =;
1

ril

* Gat tha y coordinate of this Lomation.
¥ Paransters - Dors

¥ Ratmynes

¥ the vy coordinate of this Location.
&/

public deuhle get¥( )

{

return yr
} ¥
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,i
* gamarata and raturn 2 Looation bhalfway batvean two othars.
t Paramsbore
t pl - the first Loocation
t p2 - the second Locabtion
t Returns
t & Location that is halfisy batwssn pl s
: and p2. * BRotate this L tion 80 in a clockwi 2 tion.
Hotm & tars degrees
L The snswar is mmll if aither pl ar p2 is nmll. P

el ddpadnt (L kd pl, Loaatiom p2j

“E*-
E

double wMid, yhid;

1 /chack whathear one of tha locations is nmll.
if ((pl == omll}y || ([(p2 == mmll})
reftorn omll

// Compute the = and y widpoints.
mtid = (pi.xf2) + (p2.x/2);
Wiid = (pl.y/2) + (p2.9/2);

{f Create a new location and return it.
Lopation snewer = new Locatiom (xS, yhed) ;
rebtarn anawer

}
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* Fostoondition

* rhis Location has been rotated clockwise 90 degrees aroumd

*  the origin.

*f
puhlio woid rotatesd( )
{

douhle xEew;

douhle ylew;

// For a 9D degrem nlodkwise rotations, the new =z is the

JJ} originel y and the new y is -1 &d the arigi
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Fi

* Move this Locatiom by given mmounts aleng the x and ¥y axes.
* Paramaters

*  Bmoomt

* the amount te move this Location along the = axis

*  yhmeont

& the asount to move this Iocation along the y axis

t Fostcopdition

& This Locatbion bas been moved by the given asunts along the
& two ames .

* Wote

%  whe shift may canse a coordinate to go above

* Double.MAX VALUE or below -Double. MAX VALUE.

*  To 3 . subsequent P of getk oz

& getX will retuzn Double.FPOSITIVE INFINITE or

‘I Double. . NEGETIVE INFINITY.

*

public veoid shift(doubls x2mount, double yEmownt)

i
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[i

* Generante a String repressmtation of this Location.
* Farmmsters

* - pooe

* Retnros

* a String representation of this Location

*f

publin String teString{ )

i

raturn "{x=" + x + " =" 4+ ¥+ ")V;
}
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Objects as Parameters

Parameters
o Formal—names of parameters as defined in method header.
o Actual—names of parameters in method invocation.

Formal parameters refer to same objects as actual
parameters.

o Changes to object in method are visible to invoking method.
Example
o Location.midPoint(p, S);

o public static Location midPoint(Location pl,
Location p2)

Location p | e| Location s | e|

opR
® o
< X
|

[EEN

< X

N N

Location pl Ll Location p2 L
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Objects as Return Values

midPoint Method—Specification

public static Location midPoint(Location pl,
Location p2)

Generates & returns a Location halfway between two others.

o Parameters
pl—the first location.
p2—the second location.
o Returns
a Location halfway between two others.
o Note
The answer is nul I if either Location is null.
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Objects as Return Values...

midPoint Method—Implementation

public static Location midPoint(Location pl, Location p2)

{
double xMid, yMid;

/I Check whether one of the Locations is null.
if ((p1 == nullD) || (P2 = null))
return null;

/I Compute the x & y midpoints.
xMid = (p1.x /7 2) + (p2.x / 2);
yMid = (pl.y /7 2) + (p2.y / 2);

/I Create a new Location & return it.
return new Location(xMid, yMid);
b
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Equals Method

==vs. Equals
Operator “==" compares primitive types.
o Object references are equal when they refer to the same object.

Method Equals compares objects.

o Instances of the same class are equal when their instance variables
have the same values.

(p == s) is true (p !'= s) &
o Location p = new p.equals(s)
Location(10,2); o Location p = new
o Location s = p; Location(10,2);
o Location s = new
Location(10,0);
o s.shift(0,2);
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Equals Method—Implementation

Class Location

public boolean
equals(Object obj)

Template

public boolean
equals(Object obj) {
{ if (obj instanceOf
if (obj is actually Location)
a Location)
Location candidate =
(Location obj);
return

/I Compare contents of
location

/I referred to by obj to this

/' location & return value.
3 }
else else

return false; return false;

} }

(candidate.y == y);
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(candidate.x == x) &&

Clone Method

Creates a copy of object.

Returns reference to Object.
o Must be typecast before used.

Class must implement Cloneable interface.
o public class Location implements Cloneable

Should invoke clone method of superclass.
o Needed for classes that are specialized.
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Clone Method...

Template

public Object clone() {
Location ans;

try {
ans = (Location) super.clone(Q);

}
catch (CloneNotSupportedException e) {
throw new RuntimeException
(""This class does not implement Cloneable™);

}

/I Make necessary changes.
return ans;

}
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Clone Method...

Class Location

public Object clone() {
Location answer;

try {
answer = (Location) super.clone();

}
catch (CloneNotSupportedException e) {
/I Exception should not occur. "implements Cloneable" may be absent
/l from class header.
throw new RuntimeException
("'This class does not implement Cloneable™);
}

return answer;
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Class Location—Demo

Description
o Creates two locations
o Rotates one twice 90°.

Output

The still location is at: (x=-2.0 y=-1.5)
The mobile location is at: (x=-2.0 y=-1.5)
Distance between them: 0.0

These two locations have equal coordinates.

I will rotate one location by two 90 degree turns.
The still location is at: (x=-2.0 y=-1.5)

The mobile location is at: (x=2.0 y=1.5)

Distance between them: 5.0

These two locations have different coordinates.
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Class Location—Demo...

import edu.colorado.geometry.Location;
class LocationDemonstration

public static void main(String[ ] args)

final double STILL_X -2.0;

final double STILL_Y -1.5;

final int ROTATIONS = 2;

Location still = new Location(STILL_X, STILL_Y);
Location mobile = (Location) still.clone( );
printData(still, mobile);

System.out.printIn(’"l will rotate one location by two 90 degree turns.

specifiedRotation(mobile, ROTATIONS);
printData(still, mobile);

3
// Other methods. ..
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Class Location—Demo...

// Rotate a Location p by a specified number of
// 90 degree clockwise turns.
public static void specifiedRotation(Location p, Int n)
{
while (n > 0)
{
p-rotate90( );
n--:
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Class Location—Demo...

// Print some information about two locations:
// s (a "still" location) and m (a "mobile"™ location).

public static void printData(Location s, Location m)

System.out.println ("The still location is at: " + s.toString( ));
System.out.println ("The mobile location is at: " + m.toString( ));
System.out.println (“"Distance between them: " + Location.distance(s, m));
if (s.equals(m))

System.out.println (“"These two locations have equal coordinates.™);
else

System.out.printIn(""These two locations have different coordinates.");
System.out.printin( );
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