CSC 245: Objects and Data
Abstraction

Chapter 2
Abstract Data Types & Java Classes

Objects and Data Abstraction (v1.05)

Outline

Classes & Members
o Defining a New Class & its Members
o Constructors
o Accessor Methods
Using a Class
o Creating & Using Objects
o Object References
Packages

Parameters, Equals Methods, Clones

Objects and Data Abstraction (v1.05)

Objects

Object Oriented Programming (OOP)

o An approach in which data occurs in tidy packages
called Objects.

o Objects are manipulated using functions called
methods which are part of their objects

Class

o Definition or template for objects (called instances)
Data members of an object.
Methods of an object.

Objects and Data Abstraction (v1.05)

Abstract Data Types

Information Hiding

o An example of the separation of specification from
implementation

Abstract Data Type (ADT)
o Specification of a class’s interface.
a Class is an implementation of an ADT

We will present throughout this chapter two
examples of ADTs

Objects and Data Abstraction (v1.05)

Class Members Example: Mechanical Throttle

A class is a new kind of data type Description _ _
. o A class that is used to store and manipulate the status of mechanical
A class includes throttle
o Data o Athrottle is a lever that can be moved to control fuel flow.
Integers, characters, floats, etc. Similar to a gas pedal.
o Methods Throttle Positions
Operations on objects. o Shutoff position

Allows no fuel flow.
o On positions
Flow proportional to lever location.

o Constructors
Initialize data of newly created objects.

o View class as an ADT Topmost position—maximum flow.
Can specify which members are visible to the outside. Initialization

Taken all together, the above elements constitute the 2 Number of positions

class members o Throttle @ shutoff position.

Objects and Data Abstraction (v1.05) 5 Objects and Data Abstraction (v1.05)

Example: Mechanical Throttle... Example: Mechanical Throttle...

Constructor Defining New Class
o Creates new throttle with:)
One shutoff position & public class Throttle { o
A specified number of on positions. private int top; // topmost position of lever
private int position; // current position of
lever
Methods
o What is fuel flow? /I Implementations of constructors & methods
Proportion of maximum flow. /' go here
o Is throttle on? 3}

Return true/false based on state of throttle.

o Shift throttle by a given amount.
o Class header

o Move throttle back to shutoff position. . Instance variables

Objects and Data Abstraction (v1.05)

-

Objects and Data Abstraction (v1.05)

Constructors

Instance variables initialized to Java’s default values.
o O for numbers, False for booleans, etc.

Declaration w/initialization overrides default values.
int step = 10;

Constructor's name must be class’s name.

A constructor does not have a return value.

Objects and Data Abstraction (v1.05) 9

Example: Throttle Example...

Constructor—Specification
public Throttle(int size)
Construct a Throttle with a specified number of positions.

o Parameters
size—number of on positions for this new Throttle.

o Precondition
size > 0

o Postcondition
This Throttle has been initialized with the specified number of on
positions above the shutoff position, and is currently shut off.

o Throws: 11legalArgumentException
Indicates that size is not positive.

Objects and Data Abstraction (v1.05) 10

Example: Mechanical Throttle...

Constructor—Implementation

public Throttle(int size)
{
if (size <= 0)
throw new
I11legalArgumentException(*'Size <= 0: " + size);
top = size;

// No assignment needed for position.
// default value is zero.

}

Objects and Data Abstraction (v1.05) 1

No-Arguments Constructor

Does not need information to initialize data
members.

Automatically created by Java.
o When no other constructors defined!

Can be overridden by implementer.

Objects and Data Abstraction (v1.05) 12

Methods

Accessor
o Gives info about object without altering it.
o Also called get-methods or getters.

Modifier
o May change object's state.

Methods implement operations on objects.
o Inspect & modify object's data members.

Objects and Data Abstraction (v1.05) 13

Example: Mechanical Throttle...

Accessor Method—getFlow

public double getFlow()
Get the current flow of this Throttle.

o Returns

the current flow rate (always in the range [0.0 ... 1.0]) as a
proportion of the maximum flow.

public double getFlow()

{
return (double) position / (double) top;

}

Objects and Data Abstraction (v1.05)

Example: Mechanical Throttle...

Accessor Method—isOn

public boolean isOn()
Check whether this Throttle is on.

o Returns

true if this Throttle's flow is above zero. Otherwise, return
false.

public boolean isOn()

{
return (getFlow() > 0);

// Equivalent to (position > 0)

Objects and Data Abstraction (v1.05) 15

Example: Mechanical Throttle...

Modification Method—shutOff

public void shutOff()
Turn off this Throttle.

Postcondition:
This Throttle's flow has been shut off.

public void shutOff()
{

position = 0;

}

Objects and Data Abstraction (v1.05)

Example: Mechanical Throttle...

Modification Method—shift

public void shift(int amount)
Move this Throttle's position up or down.

o Parameters

amount—amount to move position up or down (+ve for up, -ve
for down)

o Postcondition
This Throttle's position has been moved by specified amount.
Position always between zero & top position.

Objects and Data Abstraction (v1.05) 17

Example: Mechanical Throttle...

Modification Method—shift...

public void shift(int amount)
{
if (amount > top — position)
// Adding amount puts position above top.
position = top;
else 1T (position + amount < 0)
// Adding amount puts position below zero.
position = O;
else
// Adding amount puts position in range [0..top]
position += amount;

Objects and Data Abstraction (v1.05) 18

Using a Class

Creating Objects

Throttle control;
o control refers to an instance of class Throttle.

Initialized to nul I.

Cannot invoke any method on control yet.

new Throttle(100);
o Create a new Throttle object.
o Instance variable top initialized to 100.

Objects and Data Abstraction (v1.05) 19

Using a Class

Creating Objects...

Throttle control = new Throttle(100);
Throttle control;
control = new Throttle(100);

o Equivalent sets of statements
o control refers to instance of Throttle.

Objects and Data Abstraction (v1.05) 20

Using a Class... Using a Class...

Using Objects Example
control _shift(3); final int SIZE = 8; // Size of the Throttle.
control.isOn(); final int SPOT = 3; // Target of Throttle"s lever.
o Invoke methods shift and isOn on object that control refers Throttle small = new Throttle(SIZE);
to. :

small.shifTt(SPOT);
System.out.print

Method Call Components ('My small throttle is now at position™);

- (}Mectre&wence(e{},Control). System.out.printIn(SPOT + " out of " + SIZE + ".");
o Field selector operator () System.out.printIn("The flow is now: " +
o Method name (e.g., shift) small_getFlow());
o Parameter list
May be empty. My small throttle is now at position 3 out of 8.

The flow is now: 0.375.

Objects and Data Abstraction (v1.05) 21 Objects and Data Abstraction (v1.05) 22

Using a Class... Reference Variable Assignment
Example—Multiple Instances of Same Class Code Example 1
Throttle tl1
Throttle tiny = new Throttle(4); Throttle t1;
Throttle huge = new Throttle(10000); Throttle t2;
tiny.shift(2); tl = new Throttle(100); Top 100
huge . shiFt(2500); g-fhgf(%); position ?7?

o Objects tiny & huge are instances of the class Throttle. t2.shift(-5);

Same methods.)
Different copies of instance variables. Aliases
o Refer to the same object.

Throttle t2

Objects and Data Abstraction (v1.05) 23 Objects and Data Abstraction (v1.05) 24

Reference Variable Assignment...

Code Example 2

Throttle t1;
Throttle t2;

tl = new Throttle(100);
tl._shift(25);
t2 = new Throttle(100);
t2.shift(25);

true Expressions
o tl 1= €2
o tl.equals(t2)

Throttle t1

top 100
position 25

top 100

[::jij////’ position 25

Throttle t2

Objects and Data Abstraction (v1.05)

25

Equality Test

(tl == t2)is true

Throttle tl1
Throttle t1;
Throttle t2;

tl = new Throttle(100);
tl_shift(25);
t2 = t1;

top 100
position 25

Variables refer to SAME

Object. Throttle t2

Objects and Data Abstraction (v1.05) 26

Equality Test...

(tl == t2)is false

Throttle t1;
Throttle t2;

tl = new Throttle(100);
tl._shift(25);
t2 = new Throttle(100);
t2.shift(25);

Variables do NOT refer to
SAME object.

Throttle t1

top 100
position 25

top 100

[::ji]////” position 25

Throttle t2

Objects and Data Abstraction (v1.05)

27

Class Location—Specification

Constructor
public Location(double xInitial, double ylnitial)
o Constructs a Location with specified coordinates.

o Parameters
xInitial—the initial x coordinate of this Location.
yInitial—the initial y coordinate of this Location.

o Postcondition
This Location has been initialized at the given coordinates.

clone Method
public Object clone()
o Generate a copy of this Location.

o Returns
A copy of this Location. Changes to copy do not affect this Location.

Objects and Data Abstraction (v1.05) 28

Class Location—Specification. ..

distance Method

public static double distance
(Location pl, Location p2)

o Compute the distance between two Locations.
o Parameters

pl—the first Location.

p2—the second Location.
o Returns

the distance between p1l and p2.

o Note

The answer is Double _.POSITIVE_INFINITY if the distance
calculations overflows. The answer is Double.NaN if either
Location is null.

Objects and Data Abstraction (v1.05) 29

Class Location—Specification...

equals Method

public boolean equals(Object obj)
o Compare this Location with another object.

o Parameters
ob j—an object with which this Location is compared.

o Returns

true if obj refers to a Location with same value. Otherwise,
false.

o Note
The answer is false if obj is nul'l oris not a Location.

Objects and Data Abstraction (v1.05) 30

Class Location—Specification. ..

midPoint Method

public static Location midPoint
(Location pl, Location p2)

o Generates & returns a Location halfway between two others.
u Parameters

pl—the first Location.

p2—the second Location.

o Returns
a Location that is halfway between pl and p2.

o Note
The answer is nul l if plorp2isnull.

Objects and Data Abstraction (v1.05) 31

Class Location—Specification. ..

getX & getY Methods

public double getX() -and- public double
getYQO

o Get the x or y coordinate of this Location.

o Returns

the x or y coordinate of this Location.

rotate90 Method
public void rotate90()
o Rotate this Location 90° in a clockwise direction.

o Postcondition
This Location has been rotated clockwise 90° around the origin.

Objects and Data Abstraction (v1.05) 32

Class Location—Specification. ..

shift Method
public void shift(double xAmount, double yAmount)
o Move this Location by given amounts along x & y axes.
o Postcondition

This Location has been moved by given amounts along the two axes.
o Note

shift may cause a coordinate to go above Double .MAX_VALUE or below —
Double_MAX_VALUE. Subsequent calls to accessor return
Double.POSITIVE_INFINITY or Double NEGATIVE_INFINITY.

toString Method
public String toString()

T.ocation Class

e wdn ool) -

Pl St L R L T T T e R T U SR R Y T
*+ & Looation object kesps track of s location on a two-dimsnsiooal
+ -
FL L Lt L L L T T T T T Y
publin alass Location implaments Clonssbhls
i
private doubls x; // Tha = oocordinate of this Loostion
private donbls y; f/ Tha y ooordinete of this Loomtion

Fil
Constront a Lecation with speaifisd occordinates.
Paramatars
xInttial
tha initial = coordinate of this Lomsticom
gInttial
tha initial ¥ coordinate of this Lomatic:m
Postaondition:
Thiz Ioocation has besn initialized at the given cooxdinatas.

L L NN

o Generate a string representation of this Location. */
public Location {doubhle xInitial, doubls yIndtial)
o Returns {
a string representation of this Location. = = xInitlal;
¥ = yInitial;
}
Objects and Data Abstraction (v1.05) 33 Objects and Data Abstraction (v1.05) 34
Fil
i * Compute the dist bk two Locatd
* ganarate a copy of this Location. * Paranshbors
* Parammbars - Done * pl - tha First Looakien
+* Returns * npd - the second Location
* The retun value isx =u copy of this L = | Subwag * Beturns
* changes to the copy will not affect the origioal, Dor vice wverss. * the distanos betwsen pl and p2
+* Hots that the return valus must be typecast to a * Hobe
* Location hefors it can be - * The snswer is Double.POSIYIVE INFIMITY if the distance calculation
t} * opyexflows. The answer is Double.MaM if sither Locatiom is zmuall.
publin Ohjact clonai) ®f
{ // Clona a Location objent. poblicz tic double dist {Location pl, L tion p2)
Iocation snewsr: {

txy {
answer = ([Location) super.clooe();
}
ocateh {(ClonaifotSnpportedBvcaption a) {
{// BExvaption should not ocemr. But iF it doas, it wonld

Objects and Data Abstraction (v1.05) 35

dovble a, b, o sguared;

ff# Check whether om= of the locations is muoll.
if ((pl == gull) || (P2 == =ull))
return Dooble . Hal;

ff Caloulate differences in x and y coordinates.
a=pl.x - p2.8;
b =pl.y - p2.¥;

// Use Bythag T
11 harts the losations.
c squared = ata + bih;

to calemiabe the square of the distanos.

return Math.sqgrt(o_squared) ;
|3

Objects and Data Abstraction (v1.05)

36

o,
L]

Compare this Locatiosn to another object for equality.
Parameters

ab)

an obhject with which this Location will ba compared
Baturns

A rotuorn valne of tros indicatas that

ol rafors to a

Location object with the same valos as this
Logation. Otherwise the return wvaloe is

falsa.
Hote:

If ab} is mall or doas not refar to a
Location object, then the answer is falseo.

{.'!!......lﬂilﬂ

public boolsan equals (Object obj)
{
if {eb] instamosef Location)
{
Location cendidate = {Locatiom) obj;
return (candidate.z — =) &6 (candidate.y — ¥);

3
else
return false;

* et the x coordinate of this Location.
+ Parsmsters - Done
t Returns
t the = coordinate of this Location.
*f

publis douvhle gatX()

i

ratarn =;
1

ril

* Gat tha y coordinate of this Lomation.
¥ Paransters - Dors

¥ Ratmynes

¥ the vy coordinate of this Location.
&/

public deuhle get¥()

{

return yr
} ¥
Objects and Data Abstraction (v1.05) 37 Objects and Data Abstraction (v1.05) 38
,i
* gamarata and raturn 2 Looation bhalfway batvean two othars.
t Paramsbore
t pl - the first Loocation
t p2 - the second Locabtion
t Returns
t & Location that is halfisy batwssn pl s
: and p2. * BRotate this L tion 80 in a clockwi 2 tion.
Hotm & tars degrees
L The snswar is mmll if aither pl ar p2 is nmll. P

el ddpadnt (L kd pl, Loaatiom p2j

“E*-
E

double wMid, yhid;

1 /chack whathear one of tha locations is nmll.
if ((pl == omll}y || ([(p2 == mmll})
reftorn omll

// Compute the = and y widpoints.
mtid = (pi.xf2) + (p2.x/2);
Wiid = (pl.y/2) + (p2.9/2);

{f Create a new location and return it.
Lopation snewer = new Locatiom (xS, yhed) ;
rebtarn anawer

}

Objects and Data Abstraction (v1.05) 39

* Fostoondition

* rhis Location has been rotated clockwise 90 degrees aroumd

* the origin.

*f
puhlio woid rotatesd()
{

douhle xEew;

douhle ylew;

// For a 9D degrem nlodkwise rotations, the new =z is the

JJ} originel y and the new y is -1 &d the arigi

Objects and Data Abstraction (v1.05)

40

Fi

* Move this Locatiom by given mmounts aleng the x and ¥y axes.
* Paramaters

* Bmoomt

* the amount te move this Location along the = axis

* yhmeont

& the asount to move this Iocation along the y axis

t Fostcopdition

& This Locatbion bas been moved by the given asunts along the
& two ames .

* Wote

% whe shift may canse a coordinate to go above

* Double.MAX VALUE or below -Double. MAX VALUE.

* To 3 . subsequent P of getk oz

& getX will retuzn Double.FPOSITIVE INFINITE or

‘I Double. . NEGETIVE INFINITY.

*

public veoid shift(doubls x2mount, double yEmownt)

i

Objects and Data Abstraction (v1.05)

41

[i

* Generante a String repressmtation of this Location.
* Farmmsters

* - pooe

* Retnros

* a String representation of this Location

*f

publin String teString{)

i

raturn "{x=" + x + " =" 4+ ¥+ ")V;
}

Objects and Data Abstraction (v1.05)

42

Objects as Parameters

Parameters
o Formal—names of parameters as defined in method header.
o Actual—names of parameters in method invocation.

Formal parameters refer to same objects as actual
parameters.

o Changes to object in method are visible to invoking method.
Example
o Location.midPoint(p, S);

o public static Location midPoint(Location pl,
Location p2)

Location p | e| Location s | e|

opR
® o
< X
|

[EEN

< X

N N

Location pl Ll Location p2 L

Objects and Data Abstraction (v1.05)

43

Objects as Return Values

midPoint Method—Specification

public static Location midPoint(Location pl,
Location p2)

Generates & returns a Location halfway between two others.

o Parameters
pl—the first location.
p2—the second location.
o Returns
a Location halfway between two others.
o Note
The answer is nul I if either Location is null.

Objects and Data Abstraction (v1.05)

44

Objects as Return Values...

midPoint Method—Implementation

public static Location midPoint(Location pl, Location p2)

{
double xMid, yMid;

/I Check whether one of the Locations is null.
if ((p1 == nullD) || (P2 = null))
return null;

/I Compute the x & y midpoints.
xMid = (p1.x /7 2) + (p2.x / 2);
yMid = (pl.y /7 2) + (p2.y / 2);

/I Create a new Location & return it.
return new Location(xMid, yMid);
b

Objects and Data Abstraction (v1.05)

45

Equals Method

==vs. Equals
Operator “==" compares primitive types.
o Object references are equal when they refer to the same object.

Method Equals compares objects.

o Instances of the same class are equal when their instance variables
have the same values.

(p == s) is true (p !'= s) &
o Location p = new p.equals(s)
Location(10,2); o Location p = new
o Location s = p; Location(10,2);
o Location s = new
Location(10,0);
o s.shift(0,2);

Objects and Data Abstraction (v1.05) 46

Equals Method—Implementation

Class Location

public boolean
equals(Object obj)

Template

public boolean
equals(Object obj) {
{ if (obj instanceOf
if (obj is actually Location)
a Location)
Location candidate =
(Location obj);
return

/I Compare contents of
location

/I referred to by obj to this

/' location & return value.
3 }
else else

return false; return false;

} }

(candidate.y == y);

Objects and Data Abstraction (v1.05)

(candidate.x == x) &&

Clone Method

Creates a copy of object.

Returns reference to Object.
o Must be typecast before used.

Class must implement Cloneable interface.
o public class Location implements Cloneable

Should invoke clone method of superclass.
o Needed for classes that are specialized.

Objects and Data Abstraction (v1.05) 48

Clone Method...

Template

public Object clone() {
Location ans;

try {
ans = (Location) super.clone(Q);

}
catch (CloneNotSupportedException e) {
throw new RuntimeException
(""This class does not implement Cloneable™);

}

/I Make necessary changes.
return ans;

}

Objects and Data Abstraction (v1.05) 49

Clone Method...

Class Location

public Object clone() {
Location answer;

try {
answer = (Location) super.clone();

}
catch (CloneNotSupportedException e) {
/I Exception should not occur. "implements Cloneable" may be absent
/l from class header.
throw new RuntimeException
("'This class does not implement Cloneable™);
}

return answer;

Objects and Data Abstraction (v1.05)

50

Class Location—Demo

Description
o Creates two locations
o Rotates one twice 90°.

Output

The still location is at: (x=-2.0 y=-1.5)
The mobile location is at: (x=-2.0 y=-1.5)
Distance between them: 0.0

These two locations have equal coordinates.

I will rotate one location by two 90 degree turns.
The still location is at: (x=-2.0 y=-1.5)

The mobile location is at: (x=2.0 y=1.5)

Distance between them: 5.0

These two locations have different coordinates.

Objects and Data Abstraction (v1.05) 51

Class Location—Demo...

import edu.colorado.geometry.Location;
class LocationDemonstration

public static void main(String[] args)

final double STILL_X -2.0;

final double STILL_Y -1.5;

final int ROTATIONS = 2;

Location still = new Location(STILL_X, STILL_Y);
Location mobile = (Location) still.clone();
printData(still, mobile);

System.out.printIn(’"l will rotate one location by two 90 degree turns.

specifiedRotation(mobile, ROTATIONS);
printData(still, mobile);

3
// Other methods. ..

Objects and Data Abstraction (v1.05)

")

Class Location—Demo...

// Rotate a Location p by a specified number of
// 90 degree clockwise turns.
public static void specifiedRotation(Location p, Int n)
{
while (n > 0)
{
p-rotate90();
n--:

Objects and Data Abstraction (v1.05) 53

Class Location—Demo...

// Print some information about two locations:
// s (a "still" location) and m (a "mobile"™ location).

public static void printData(Location s, Location m)

System.out.println ("The still location is at: " + s.toString());
System.out.println ("The mobile location is at: " + m.toString());
System.out.println (“"Distance between them: " + Location.distance(s, m));
if (s.equals(m))

System.out.println (“"These two locations have equal coordinates.™);
else

System.out.printIn(""These two locations have different coordinates.");
System.out.printin();

Objects and Data Abstraction (v1.05) 54

