
Objects and Data Abstraction (v1.05) 1

CSC 245: Objects and Data
Abstraction

Chapter 2
Abstract Data Types & Java Classes

Objects and Data Abstraction (v1.05) 2

Outline

Classes & Members
Defining a New Class & its Members
Constructors
Accessor Methods

Using a Class
Creating & Using Objects
Object References

Packages
Parameters, Equals Methods, Clones

Objects and Data Abstraction (v1.05) 3

Objects

Object Oriented Programming (OOP)
An approach in which data occurs in tidy packages
called Objects.
Objects are manipulated using functions called
methods which are part of their objects

Class
Definition or template for objects (called instances)

Data members of an object.
Methods of an object.

Objects and Data Abstraction (v1.05) 4

Abstract Data Types

Information Hiding
An example of the separation of specification from
implementation

Abstract Data Type (ADT)
Specification of a class’s interface.
Class is an implementation of an ADT

We will present throughout this chapter two
examples of ADTs

Objects and Data Abstraction (v1.05) 5

Class Members

A class is a new kind of data type
A class includes

Data
Integers, characters, floats, etc.

Methods
Operations on objects.

Constructors
Initialize data of newly created objects.

View class as an ADT
Can specify which members are visible to the outside.

Taken all together, the above elements constitute the
class members

Objects and Data Abstraction (v1.05) 6

Example: Mechanical Throttle

Description
A class that is used to store and manipulate the status of mechanical
throttle
A throttle is a lever that can be moved to control fuel flow.

Similar to a gas pedal.

Throttle Positions
Shutoff position

Allows no fuel flow.
On positions

Flow proportional to lever location.
Topmost position—maximum flow.

Initialization
Number of positions
Throttle @ shutoff position.

Objects and Data Abstraction (v1.05) 7

Example: Mechanical Throttle…

Constructor
Creates new throttle with:

One shutoff position &
A specified number of on positions.

Methods
What is fuel flow?

Proportion of maximum flow.

Is throttle on?
Return true/false based on state of throttle.

Shift throttle by a given amount.
Move throttle back to shutoff position.

Objects and Data Abstraction (v1.05) 8

Example: Mechanical Throttle…

Defining New Class

public class Throttle {
private int top; // topmost position of lever
private int position; // current position of
lever

}

Class header
Instance variables

// Implementations of constructors & methods
// go here

Objects and Data Abstraction (v1.05) 9

Constructors

Instance variables initialized to Java’s default values.
0 for numbers, false for booleans, etc.

Declaration w/initialization overrides default values.
int step = 10;

Constructor’s name must be class’s name.

A constructor does not have a return value.

Objects and Data Abstraction (v1.05) 10

Example: Throttle Example…

Constructor—Specification
public Throttle(int size)
Construct a Throttle with a specified number of positions.

Parameters
size—number of on positions for this new Throttle.

Precondition
size > 0
Postcondition
This Throttle has been initialized with the specified number of on
positions above the shutoff position, and is currently shut off.
Throws: IllegalArgumentException
Indicates that size is not positive.

Objects and Data Abstraction (v1.05) 11

Example: Mechanical Throttle…

Constructor—Implementation

public Throttle(int size)
{

if (size <= 0)
throw new

IllegalArgumentException("Size <= 0: " + size);
top = size;

// No assignment needed for position.
// default value is zero.

}

Objects and Data Abstraction (v1.05) 12

No-Arguments Constructor

Does not need information to initialize data
members.

Automatically created by Java.
When no other constructors defined!

Can be overridden by implementer.

Objects and Data Abstraction (v1.05) 13

Methods

Accessor
Gives info about object without altering it.
Also called get-methods or getters.

Modifier
May change object's state.

Methods implement operations on objects.
Inspect & modify object's data members.

Objects and Data Abstraction (v1.05) 14

Example: Mechanical Throttle…

Accessor Method—getFlow

public double getFlow()
Get the current flow of this Throttle.

Returns
the current flow rate (always in the range [0.0 … 1.0]) as a
proportion of the maximum flow.

public double getFlow()
{

return (double) position / (double) top;
}

Objects and Data Abstraction (v1.05) 15

Example: Mechanical Throttle…

Accessor Method—isOn

public boolean isOn()
Check whether this Throttle is on.

Returns
true if this Throttle's flow is above zero. Otherwise, return
false.

public boolean isOn()
{

return (getFlow() > 0);
// Equivalent to (position > 0)

}

Objects and Data Abstraction (v1.05) 16

Example: Mechanical Throttle…

Modification Method—shutOff

public void shutOff()
Turn off this Throttle.

Postcondition:
This Throttle's flow has been shut off.

public void shutOff()
{

position = 0;
}

Objects and Data Abstraction (v1.05) 17

Example: Mechanical Throttle…

Modification Method—shift

public void shift(int amount)
Move this Throttle's position up or down.

Parameters
amount—amount to move position up or down (+ve for up, -ve
for down)

Postcondition
This Throttle's position has been moved by specified amount.
Position always between zero & top position.

Objects and Data Abstraction (v1.05) 18

Example: Mechanical Throttle…

Modification Method—shift…

public void shift(int amount)
{

if (amount > top – position)
// Adding amount puts position above top.
position = top;

else if (position + amount < 0)
// Adding amount puts position below zero.
position = 0;

else
// Adding amount puts position in range [0…top]
position += amount;

}

Objects and Data Abstraction (v1.05) 19

Using a Class

Creating Objects

Throttle control;
control refers to an instance of class Throttle.

Initialized to null.

Cannot invoke any method on control yet.

new Throttle(100);
Create a new Throttle object.
Instance variable top initialized to 100.

Objects and Data Abstraction (v1.05) 20

Using a Class

Creating Objects…

Throttle control = new Throttle(100);
Throttle control;
control = new Throttle(100);

Equivalent sets of statements
control refers to instance of Throttle.

Objects and Data Abstraction (v1.05) 21

Using a Class…

Using Objects
control.shift(3);
control.isOn();

Invoke methods shift and isOn on object that control refers
to.

Method Call Components
Object reference (e.g., control).
Field selector operator (.)
Method name (e.g., shift)
Parameter list

May be empty.

Objects and Data Abstraction (v1.05) 22

Using a Class…

Example

final int SIZE = 8; // Size of the Throttle.
final int SPOT = 3; // Target of Throttle's lever.
Throttle small = new Throttle(SIZE);
small.shift(SPOT);
System.out.print

("My small throttle is now at position");
System.out.println(SPOT + " out of " + SIZE + ".");
System.out.println("The flow is now: " +

small.getFlow());

My small throttle is now at position 3 out of 8.
The flow is now: 0.375.

Objects and Data Abstraction (v1.05) 23

Using a Class…

Example—Multiple Instances of Same Class

Throttle tiny = new Throttle(4);
Throttle huge = new Throttle(10000);
tiny.shift(2);
huge.shift(2500);

Objects tiny & huge are instances of the class Throttle.
Same methods.
Different copies of instance variables.

Objects and Data Abstraction (v1.05) 24

Reference Variable Assignment

Code Example 1

Throttle t1;
Throttle t2;
t1 = new Throttle(100);
t1.shift(25);
t2 = t1;
t2.shift(-5);

Aliases
Refer to the same object.

Throttle t1

Throttle t2

top 100
position ???

Objects and Data Abstraction (v1.05) 25

Reference Variable Assignment…

Code Example 2

Throttle t1;
Throttle t2;
t1 = new Throttle(100);
t1.shift(25);
t2 = new Throttle(100);
t2.shift(25);

true Expressions
t1 != t2
t1.equals(t2)

Throttle t1

Throttle t2

top 100
position 25

top 100
position 25

Objects and Data Abstraction (v1.05) 26

Equality Test

(t1 == t2) is true
Throttle t1;
Throttle t2;
t1 = new Throttle(100);
t1.shift(25);
t2 = t1;

Variables refer to SAME
object.

Throttle t1

Throttle t2

top 100
position 25

Objects and Data Abstraction (v1.05) 27

Equality Test…

(t1 == t2) is false

Throttle t1;
Throttle t2;
t1 = new Throttle(100);
t1.shift(25);
t2 = new Throttle(100);
t2.shift(25);

Variables do NOT refer to
SAME object.

Throttle t1

Throttle t2

top 100
position 25

top 100
position 25

Objects and Data Abstraction (v1.05) 28

Class Location—Specification

Constructor
public Location(double xInitial, double yInitial)

Constructs a Location with specified coordinates.
Parameters
xInitial—the initial x coordinate of this Location.
yInitial—the initial y coordinate of this Location.
Postcondition
This Location has been initialized at the given coordinates.

clone Method
public Object clone()

Generate a copy of this Location.
Returns
A copy of this Location. Changes to copy do not affect this Location.

Objects and Data Abstraction (v1.05) 29

Class Location—Specification…

distance Method

public static double distance
(Location p1, Location p2)
Compute the distance between two Locations.
Parameters
p1—the first Location.
p2—the second Location.
Returns
the distance between p1 and p2.
Note

The answer is Double.POSITIVE_INFINITY if the distance
calculations overflows. The answer is Double.NaN if either
Location is null.

Objects and Data Abstraction (v1.05) 30

Class Location—Specification…

equals Method

public boolean equals(Object obj)
Compare this Location with another object.
Parameters
obj—an object with which this Location is compared.
Returns
true if obj refers to a Location with same value. Otherwise,

false.
Note
The answer is false if obj is null or is not a Location.

Objects and Data Abstraction (v1.05) 31

Class Location—Specification…

midPoint Method

public static Location midPoint
(Location p1, Location p2)
Generates & returns a Location halfway between two others.
Parameters
p1—the first Location.
p2—the second Location.
Returns
a Location that is halfway between p1 and p2.
Note
The answer is null if p1 or p2 is null.

Objects and Data Abstraction (v1.05) 32

Class Location—Specification…

getX & getY Methods
public double getX() -and- public double
getY()
Get the x or y coordinate of this Location.
Returns
the x or y coordinate of this Location.

rotate90 Method
public void rotate90()

Rotate this Location 90o in a clockwise direction.
Postcondition
This Location has been rotated clockwise 90o around the origin.

Objects and Data Abstraction (v1.05) 33

Class Location—Specification…

shift Method
public void shift(double xAmount, double yAmount)

Move this Location by given amounts along x & y axes.
Postcondition
This Location has been moved by given amounts along the two axes.
Note

shift may cause a coordinate to go above Double.MAX_VALUE or below –
Double.MAX_VALUE. Subsequent calls to accessor return
Double.POSITIVE_INFINITY or Double.NEGATIVE_INFINITY.

toString Method
public String toString()

Generate a string representation of this Location.
Returns

a string representation of this Location.

Objects and Data Abstraction (v1.05) 34

Location Class

Objects and Data Abstraction (v1.05) 35 Objects and Data Abstraction (v1.05) 36

Objects and Data Abstraction (v1.05) 37 Objects and Data Abstraction (v1.05) 38

Objects and Data Abstraction (v1.05) 39 Objects and Data Abstraction (v1.05) 40

Objects and Data Abstraction (v1.05) 41 Objects and Data Abstraction (v1.05) 42

Objects and Data Abstraction (v1.05) 43

Objects as Parameters

Parameters
Formal—names of parameters as defined in method header.
Actual—names of parameters in method invocation.

Formal parameters refer to same objects as actual
parameters.

Changes to object in method are visible to invoking method.
Example

Location.midPoint(p, s);
public static Location midPoint(Location p1,

Location p2)

Location p
x –1.0
y 0.8

Location p1

Location s
x 1.7
y -1.2

Location p2

Objects and Data Abstraction (v1.05) 44

Objects as Return Values

midPoint Method—Specification

public static Location midPoint(Location p1,
Location p2)

Generates & returns a Location halfway between two others.
Parameters
p1—the first location.
p2—the second location.
Returns
a Location halfway between two others.
Note
The answer is null if either Location is null.

Objects and Data Abstraction (v1.05) 45

Objects as Return Values…

midPoint Method—Implementation

public static Location midPoint(Location p1, Location p2)
{

double xMid, yMid;

// Check whether one of the Locations is null.
if ((p1 == null) || (p2 == null))

return null;

// Compute the x & y midpoints.
xMid = (p1.x / 2) + (p2.x / 2);
yMid = (p1.y / 2) + (p2.y / 2);

// Create a new Location & return it.
return new Location(xMid, yMid);

}

Objects and Data Abstraction (v1.05) 46

Equals Method

(p == s) is true
Location p = new
Location(10,2);
Location s = p;

(p != s) &&
p.equals(s)

Location p = new
Location(10,2);
Location s = new
Location(10,0);
s.shift(0,2);

== vs. Equals
Operator “==” compares primitive types.

Object references are equal when they refer to the same object.
Method Equals compares objects.

Instances of the same class are equal when their instance variables
have the same values.

Objects and Data Abstraction (v1.05) 47

Equals Method—Implementation

Template

public boolean
equals(Object obj)

{
if (obj is actually

a Location)
{

// Compare contents of
location

// referred to by obj to this
// location & return value.

}
else

return false;
}

Class Location
public boolean

equals(Object obj)
{

if (obj instanceOf
Location)

{
Location candidate =

(Location obj);
return
(candidate.x == x) &&
(candidate.y == y);

}
else

return false;
}

Objects and Data Abstraction (v1.05) 48

Clone Method

Creates a copy of object.

Returns reference to Object.
Must be typecast before used.

Class must implement Cloneable interface.
public class Location implements Cloneable

Should invoke clone method of superclass.
Needed for classes that are specialized.

Objects and Data Abstraction (v1.05) 49

Clone Method…

Template

public Object clone() {
Location ans;

try {
ans = (Location) super.clone();

}
catch (CloneNotSupportedException e) {

throw new RuntimeException
("This class does not implement Cloneable");

}

// Make necessary changes.
return ans;

}

Objects and Data Abstraction (v1.05) 50

Clone Method…

Class Location
public Object clone() {

Location answer;

try {
answer = (Location) super.clone();

}
catch (CloneNotSupportedException e) {

// Exception should not occur. "implements Cloneable" may be absent
// from class header.
throw new RuntimeException

("This class does not implement Cloneable");
}

return answer;
}

Objects and Data Abstraction (v1.05) 51

Class Location—Demo

Description
Creates two locations
Rotates one twice 90o.

Output
The still location is at: (x=-2.0 y=-1.5)
The mobile location is at: (x=-2.0 y=-1.5)
Distance between them: 0.0
These two locations have equal coordinates.
I will rotate one location by two 90 degree turns.
The still location is at: (x=-2.0 y=-1.5)
The mobile location is at: (x=2.0 y=1.5)
Distance between them: 5.0
These two locations have different coordinates.

Objects and Data Abstraction (v1.05) 52

Class Location—Demo…

import edu.colorado.geometry.Location;
class LocationDemonstration
{

public static void main(String[] args)
{

final double STILL_X = -2.0;
final double STILL_Y = -1.5;
final int ROTATIONS = 2;
Location still = new Location(STILL_X, STILL_Y);
Location mobile = (Location) still.clone();
printData(still, mobile);
System.out.println("I will rotate one location by two 90 degree turns.");
specifiedRotation(mobile, ROTATIONS);
printData(still, mobile);

}
// Other methods...

}

Objects and Data Abstraction (v1.05) 53

Class Location—Demo…

// Rotate a Location p by a specified number of
// 90 degree clockwise turns.
public static void specifiedRotation(Location p, int n)
{

while (n > 0)
{

p.rotate90();
n--;

}
}

Objects and Data Abstraction (v1.05) 54

Class Location—Demo…

// Print some information about two locations:
// s (a "still" location) and m (a "mobile" location).

public static void printData(Location s, Location m)
{
System.out.println ("The still location is at: " + s.toString());
System.out.println ("The mobile location is at: " + m.toString());
System.out.println ("Distance between them: " + Location.distance(s, m));
if (s.equals(m))

System.out.println ("These two locations have equal coordinates.");
else

System.out.println("These two locations have different coordinates.");
System.out.println();

}

