
1999-10-22 Computer Programming II (v1.00) 1

CSC 245: Objects an Data
Abstraction

Chapter 1
Phases of Software Development

1999-10-22 Computer Programming II (v1.00) 2

Outline

Specifications, Design, Implementation
Pre- & Post-conditions.

Running Time Analysis
Big-O Notation.
Worst-Case, Average-Case, & Best-Case

Testing & Debugging
Choosing Test Data
Boundary Values

1999-10-22 Computer Programming II (v1.00) 3

Software Development Phases

Specification of the task.
Design of a solution.
Implementation (coding) of the solution.
Analysis of the solution.
Testing & debugging.
Maintenance & evolution of the system.
Obsolescence.

1999-10-22 Computer Programming II (v1.00) 4

Definitions

Specification
Precise description of a problem.

Design
Formulation of steps to solve a problem.

Implementation
Actual code (e.g., Java, C, C++,…).

Algorithm
Set of instructions in solution.
Specified in Java, C,…, or pseudo-code.

Pseudo-code
Mixture of formal English & programming language.

1999-10-22 Computer Programming II (v1.00) 5

Design Technique

Stepwise Refinement
Problem Decomposition
Divide and Conquer

Divide task into a few subtasks.
Decompose each subtask into smaller subtasks.

Criteria
Short descriptions.
Uncoupled components.

Maximize information hiding.
Code reuse.

1999-10-22 Computer Programming II (v1.00) 6

Precondition & Postcondition

Precondition
What must be true when method is called.
Needed to guarantee correct behavior.

Postcondition
What will be true after method call has completed.
Valid precondition & correct method implementation
guarantee postcondition.

1999-10-22 Computer Programming II (v1.00) 7

Running Time Analysis

Definition
Estimate of algorithm’s execution time.
Reasoning about an algorithm’s speed.

Estimate the number of operations.
Decide what operations count.

Multiplication vs. addition.
Method call vs. arithmetic operation.

Estimate as function of problem size.
Use Big-O notation.

1999-10-22 Computer Programming II (v1.00) 8

Stair-Counting Problem: Eiffel Tower

Walk down & keep a tally.
Make a mark for each step on way down.
Walk back up.

Walk down, let Judy keep the tally.
Walk down one step.

Leave marker on steps.
Go back to start & add marker on page.
Go back to marker.

Jervis to the rescue.
Read sign: 2689 steps!

1999-10-22 Computer Programming II (v1.00) 9

Stair-Counting Problem…

Operations
Walking up or down a step.
Marking a symbol on the paper.

Walk down & keep a tally
2689 steps down, 2689 steps up, 2689 marks on paper.
Total = 8067 operations.

Walk down, but let Judy keep tally
Downward or upward steps: (1 + 2 + … + 2689) = 3,616,705.
2689 marks.
Total = 7,236,099 operations!

Jervis to the rescue
4 operations (1 per digit).

1999-10-22 Computer Programming II (v1.00) 10

Stair-Counting Problem…

Generalization
Assume n steps.

Technique 1: Walk down & count
3n operations.

Technique 2: Judy counts
n + 2 [n (n + 1) / 2]
n2 + 2n

Technique 3: Read sign
Number of digits in n.
⎣log10n⎦ + 1

1999-10-22 Computer Programming II (v1.00) 11

Stair-Counting Problem…

Big-O Notation
Order of magnitude estimate of operation count.

Technique 1: Walk down & count
O(n)
Linear time.

Technique 2: Judy counts
O(n2)
Quadratic time.

Technique 3: Read sign
O(log n)
Logarithmic time.

1999-10-22 Computer Programming II (v1.00) 12

Stair-Counting Problem…

100,020,00030,000510000
1,002,000300041000

10,2003003100

12030210

Technique 2,
with

n2 + n
operations

Technique 1,
with
3n

operations

Technique 3,
with

⎣log10 n⎦ + 1
operations

Number of stairs
(n)

Quadratic
O(n2)

Linear
O(n)

Logarithmic
O(log n)

1999-10-22 Computer Programming II (v1.00) 13

Search Example

Specification
public static boolean search(double[] data,
double target)
search an array for a specified number.

Parameters
data—an array of double numbers.
target—a particular number that we are searching for.

Returns
true—indicates that target occurs in the array.
false—indicates that target does not occur in the array.

1999-10-22 Computer Programming II (v1.00) 14

Search Example…

public static boolean search(double[] data, double target)
{

int i;
for (i = 0; i < data.length; i++)
{
// check whether the target is at data[i]
if (data[i] == target)

return true;
}
// Loop finished without finding the target.
return false;

}

1999-10-22 Computer Programming II (v1.00) 15

Search Example: Time Analysis

Number does not occur in array!
Loop start

Initialize loop variable (i = 0).
Evaluate loop condition (i < data.length).

Loop body
n iterations.
k operations per iteration (3 or 4).

Loop finishes
1 operation (return).

Total
k n + 3 = O(n)

1999-10-22 Computer Programming II (v1.00) 16

Running Time Analysis…

Worst-case
Maximum number of operations.

Average-case
Average number of operations.

Best-case
Smallest number of operations.

1999-10-22 Computer Programming II (v1.00) 17

Testing

Definition
Running a program & observing its behavior.

Uses
Verify correct behavior for test cases.
Discover errors.
Collect & reuse a battery of test data.

Critical topic in Software Engineering.

1999-10-22 Computer Programming II (v1.00) 18

Testing…

Good Test Data
Must know correct output of input data.
Should include inputs that are most likely to cause
errors.

Boundary Values
Input data one step away from different kind of
behavior.
Example:

Arguments are legal year, month, and day of month in 1999–
2099.
Boundary values are 1999-01-01 and 2099-12-31.

1999-10-22 Computer Programming II (v1.00) 19

Testing…

Fully Exercising Code
Selection introduces branches in code.
Make sure each line of code is executed at least once by test data.
Make sure code that may be skipped is actually skipped by one test
case.

Debugger
Tool that allows one to inspect code in a running program.

Tips
Never change suspicious code in the hope that it may fix the bug.
Discover exactly why a test case is failing and limit changes to
corrections of known errors.
Once you have corrected a known error, rerun all test cases.

