37. Let \mathbf{v} be a nonzero vector in \mathbb{R}^3 . Then a line L through the origin in the direction of the vector \mathbf{v} is given by all scalar multiples of the vector \mathbf{v} . That is, $L = \{t\mathbf{v} | t \in \mathbb{R}\}$. Now, let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be an isomorphism. Since T is linear, then $T(t\mathbf{v}) = tT(\mathbf{v})$. Also, by Theorem 8, $T(\mathbf{v})$ is nonzero. Hence, the set $L' = \{tT(\mathbf{v}) | t \in \mathbb{R}\}$ is also a line in \mathbb{R}^3 through the origin. A plane P is given by the span of two linearly independent vectors \mathbf{u} and \mathbf{v} . That is, $P = \{s\mathbf{u} + t\mathbf{v} | s, t \in \mathbb{R}\}$. Then $T(s\mathbf{u} + t\mathbf{v}) = sT(\mathbf{u}) + tT(\mathbf{v})$, and since T is an isomorphism $T(\mathbf{u})$ and $T(\mathbf{v})$ are linearly independent and hence, $P' = T(P) = \{sT(\mathbf{u}) + tT(\mathbf{v}) | s, t \in \mathbb{R}\}$ is a plane.

Exercise Set 4.4

If A is an $m \times n$ matrix, a mapping $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ defined by the matrix product $T(\mathbf{v}) = A\mathbf{v}$ is a linear transformation. In Section 4.4, it is shown how every linear transformation $T: V \longrightarrow W$ can be described by a matrix product. The matrix representation is given relative to bases for the vector spaces V and W and is defined using coordinates relative to these bases. If $B = \{\mathbf{v_1}, \dots, \mathbf{v_n}\}$ is a basis for V and B' a basis for W, two results are essential in solving the exercises:

• The matrix representation of T relative to B and B' is defined by

$$[T]_B^{B'} = [[T(\mathbf{v_1})]_{B'} [T(\mathbf{v_2})]_{B'} \dots [T(\mathbf{v_n})]_{B'}].$$

• Coordinates of $T(\mathbf{v})$ can be found using the formula

$$[T(\mathbf{v})]_{B'} = [T]_B^{B'}[\mathbf{v}]_B.$$

To outline the steps required in finding and using a matrix representation of a linear transformation define

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3 \text{ by } T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -x \\ -y \\ z \end{bmatrix} \text{ and let}$$

$$B = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \quad \text{and} \quad B' = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \right\}$$

two bases for \mathbb{R}^3 .

• Apply T to each basis vector in B.

$$T\left(\left[\begin{array}{c}1\\0\\0\end{array}\right]\right)=\left[\begin{array}{c}-1\\0\\0\end{array}\right], T\left(\left[\begin{array}{c}0\\1\\0\end{array}\right]\right)=\left[\begin{array}{c}0\\-1\\0\end{array}\right], T\left(\left[\begin{array}{c}0\\0\\1\end{array}\right]\right)=\left[\begin{array}{c}0\\0\\1\end{array}\right]$$

• Find the coordinates of each of the vectors found in the first step relative to B'. Since

$$\left[\begin{array}{cc|ccc|c} 1 & 1 & 2 & -1 & 0 & 0 \\ 1 & 0 & 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{array}\right] \longrightarrow \left[\begin{array}{cccc|c} 1 & 0 & 0 & 1/2 & -1 & 1/2 \\ 1 & 0 & 1 & -1/2 & 1 & 1/2 \\ 1 & 1 & 0 & -1/2 & 0 & -1/2 \end{array}\right],$$

then

$$\begin{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix}_{B'} = \begin{bmatrix} 1/2 \\ -1/2 \\ -1/2 \end{bmatrix}, \begin{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \end{bmatrix}_{B'} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix}_{B'} = \begin{bmatrix} 1/2 \\ 1/2 \\ -1/2 \end{bmatrix}.$$

• The column vectors of the matrix representation relative to B and B' are the coordinate vectors found in the previous step.

$$[T]_B^{B'} = \begin{bmatrix} 1/2 & -1 & 1/2 \\ -1/2 & 1 & 1/2 \\ -1/2 & 0 & -1/2 \end{bmatrix}$$

• The coordinates of any vector $T(\mathbf{v})$ can be found using the matrix product

$$[T(\mathbf{v})]_{B'} = [T]_{B}^{B'}[\mathbf{v}]_{B}.$$

• As an example, let $\mathbf{v} = \begin{bmatrix} 1 \\ -2 \\ -4 \end{bmatrix}$, then after applying the operator T the coordinates relative to B' is given by

$$\begin{bmatrix} T \begin{pmatrix} 1 \\ -2 \\ -4 \end{bmatrix} \end{pmatrix} \end{bmatrix}_{B'} = \begin{bmatrix} 1/2 & -1 & 1/2 \\ -1/2 & 1 & 1/2 \\ -1/2 & 0 & -1/2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ -4 \end{bmatrix} \end{bmatrix}_{B}.$$

Since B is the standard basis the coordinates of a vector are just the components, so

$$\begin{bmatrix} T \begin{pmatrix} \begin{bmatrix} 1 \\ -2 \\ -4 \end{bmatrix} \end{pmatrix} \end{bmatrix}_{B'} = \begin{bmatrix} 1/2 & -1 & 1/2 \\ -1/2 & 1 & 1/2 \\ -1/2 & 0 & -1/2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ -4 \end{bmatrix} = \begin{bmatrix} 1/2 \\ -9/2 \\ 3/2 \end{bmatrix}.$$

This vector is not $T(\mathbf{v})$, but the coordinates relative to the basis B'. Then

$$T\left(\left[\begin{array}{c}1\\-2\\-4\end{array}\right]\right) = \frac{1}{2}\left[\begin{array}{c}1\\1\\1\end{array}\right] - \frac{9}{2}\left[\begin{array}{c}1\\0\\1\end{array}\right] + \frac{3}{2}\left[\begin{array}{c}2\\1\\0\end{array}\right] = \left[\begin{array}{c}-1\\2\\-7/2\end{array}\right].$$

Other useful formulas that involve combinations of linear transformations and the matrix representation are:

$$\bullet [S+T]_B^{B'} = [S]_B^{B'} + [T]_B^{B'} \quad \bullet [kT]_B^{B'} = k[T]_B^{B'} \quad \bullet [S \circ T]_B^{B'} = [S]_B^{B'}[T]_B^{B'} \quad \bullet [T^n]_B = ([T]_B)^n \quad \bullet [T^{-1}]_B = ([T]_B)^{-1}$$

Solutions to Exercises

- 1. a. Let $B = \{\mathbf{e_1}, \mathbf{e_2}\}$ be the standard basis. To find the matrix representation for A relative to B, the column vectors are the coordinates of $T(\mathbf{e_1})$ and $T(\mathbf{e_2})$ relative to B. Recall the coordinates of a vector relative to the standard basis are just the components of the vector. Hence, $[T]_B = [T(\mathbf{e_1})_B \ [T(\mathbf{e_2})_B] = \begin{bmatrix} 5 & -1 \\ -1 & 1 \end{bmatrix}$.
- **b.** The direct computation is $T\begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 9 \\ -1 \end{bmatrix}$ and using part (a), the result is $T\begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 9 \\ -1 \end{bmatrix}$.
- **2.** a. $[T]_B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ b. The direct computation is $T \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and using part (a), the result is $T \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.
- 3. a. Let $B = \{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$ be the standard basis. Then $[T]_B = [T(\mathbf{e_1}]_B [T(\mathbf{e_2}]_B] = \begin{bmatrix} -1 & 1 & 2 \\ 0 & 3 & 1 \\ 1 & 0 & -1 \end{bmatrix}$. b. The direct computation is $T \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \\ -2 \end{bmatrix}$, and using part (a) the result is $T \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \\ -2 \end{bmatrix}$.

4. a.
$$[T]_B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
 b. The direct computation is $T \begin{bmatrix} 2 \\ -5 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -5 \\ -1 \end{bmatrix}$, and using part (a) the result is $T \begin{bmatrix} 2 \\ -5 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -5 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -5 \\ -1 \end{bmatrix}$.

5. a. The column vectors of the matrix representation relative to B and B' are the coordinates relative to B' of the images of the vectors in B by T. That is, $[T]_B^{B'} = \begin{bmatrix} T \begin{pmatrix} 1 \\ -1 \end{bmatrix} \end{bmatrix}_{B'} \begin{bmatrix} T \begin{pmatrix} 2 \\ 0 \end{bmatrix} \end{bmatrix}_{B'} \end{bmatrix}$. Since B' is the standard basis, the coordinates are the components of the vectors $T \begin{pmatrix} 1 \\ -1 \end{bmatrix}$ and $T \begin{pmatrix} 2 \\ 0 \end{bmatrix}$, so $[T]_B^{B'} = \begin{bmatrix} -3 & -2 \\ 3 & 6 \end{bmatrix}$.

b. The direct computation is $T\begin{bmatrix} -1 \\ -2 \end{bmatrix} = \begin{bmatrix} -3 \\ -3 \end{bmatrix}$ and using part (a)

$$T\left[\begin{array}{c}-1\\-2\end{array}\right]=\left[\begin{array}{cc}-3&-2\\3&6\end{array}\right]\left[\begin{array}{c}-1\\-2\end{array}\right]_B=\left[\begin{array}{cc}-3&-2\\3&6\end{array}\right]\left[\begin{array}{c}2\\-3/2\end{array}\right]=\left[\begin{array}{c}-3\\-3\end{array}\right].$$

6. a.
$$[T]_B^{B'} = \begin{bmatrix} -3 & 2 & 1 \\ 2 & 1 & 2 \\ 2 & 0 & 2 \end{bmatrix}$$
 b. $\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = T \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = [T]_B^{B'} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}_B = [T]_B^{B'} \begin{bmatrix} -3/2 \\ -3 \\ 5/2 \end{bmatrix}$

7. a. The matrix representation is given by

$$[T]_B^{B'} = \left[\ \left[T \left(\left[\begin{array}{c} -1 \\ -2 \end{array} \right] \right) \right]_{B'} \ \left[T \left(\left[\begin{array}{c} 1 \\ 1 \end{array} \right] \right) \right]_{B'} \ \right] = \left[\ \left[T \left(\left[\begin{array}{c} -2 \\ -3 \end{array} \right] \right) \right]_{B'} \ \left[T \left(\left[\begin{array}{c} 2 \\ 2 \end{array} \right] \right) \right]_{B'} \ \right].$$

We can find the coordinates of both vectors by considering

$$\begin{bmatrix} 3 & 0 & -2 & 2 \\ -2 & -2 & -3 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & -\frac{2}{3} & \frac{2}{3} \\ 0 & 1 & \frac{13}{6} & -\frac{5}{3} \end{bmatrix}, \text{ so } [T]_B^{B'} = \begin{bmatrix} -\frac{2}{3} & \frac{2}{3} \\ \frac{13}{6} & -\frac{5}{3} \end{bmatrix}.$$

b. The direct computation is $T\begin{bmatrix} -1 \\ -3 \end{bmatrix} = \begin{bmatrix} -2 \\ -4 \end{bmatrix}$. Using part (a) we can now find the coordinates of the image of a vector using the formula $[T(\mathbf{v})]_{B'}] = [T]_{B}^{B'}[\mathbf{v}]_{B}$. and then use these coordinates to fine $T(\mathbf{v})$. That is,

$$\left[T \left[\begin{array}{c} -1 \\ -3 \end{array} \right] \right]_{B'} = [T]_B^{B'} \left[\begin{array}{c} -1 \\ -3 \end{array} \right]_B = [T]_B^{B'} \left[\begin{array}{c} 2 \\ 1 \end{array} \right] = \left[\begin{array}{c} -\frac{2}{3} \\ \frac{8}{3} \end{array} \right], \text{ so } T \left[\begin{array}{c} -1 \\ -3 \end{array} \right] = -\frac{2}{3} \left[\begin{array}{c} 3 \\ -2 \end{array} \right] + \frac{8}{3} \left[\begin{array}{c} 0 \\ -2 \end{array} \right] = \left[\begin{array}{c} -2 \\ -4 \end{array} \right].$$

8. a.
$$[T]_B^{B'} = \begin{bmatrix} -1 & 1 & 1 \\ -3 & 1 & -1 \\ -3 & 1 & -2 \end{bmatrix}$$
 b. The direct computation gives $T\begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$. Using the matrix in part (a) gives $\begin{bmatrix} T \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix} \end{bmatrix}_{B'} = [T]_B^{B'} \begin{bmatrix} T \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix} \end{bmatrix}_{B} = [T]_B^{B'} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \\ -4 \end{bmatrix}$, so that
$$T\begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - 3 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} - 4 \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}.$$

9. a. Since B' is the standard basis for \mathcal{P}_2 , then $[T]_B^{B'} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$. b. The direct computation is $T(x^2-3x+3)=x^2-3x+3$. To find the coordinates of the image, we have from part (a) that

$$\left[T(x^2 - 3x + 3)\right]_{B'} = \left[T\right]_{B}^{B'} \left[x^2 - 3x + 3\right]_{B} = \left[T\right]_{B}^{B'} \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} 3\\-3\\1 \end{bmatrix}, \text{ so } T(x^2 - 3x + 3) = 3 - 3x + x^2.$$

10. a.
$$[T]_B^{B'} = \begin{bmatrix} 1 & -1 & -2 \\ -1 & 0 & 1 \\ -3 & 1 & 3 \end{bmatrix}$$
 b. The direct computation gives $T(1-x) = \frac{d}{dx}(1-x) + (1-x) = -x$.

Using the matrix in part (a) gives $[T(1-x)]_{B'} = [T]_{B'}^{B'}[1-x]_{B} = [T]_{B'}^{B'}\begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, so $T(1-x) = 0(-1+x) + 0(-1+x+x^2) - x = -x$

11. First notice that if
$$A = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}$$
, then $T(A) = \begin{bmatrix} 0 & -2b \\ 2c & 0 \end{bmatrix}$.

a.
$$[T]_B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 b. The direct computation is $T\left(\begin{bmatrix} 2 & 1 \\ 3 & -2 \end{bmatrix}\right) = \begin{bmatrix} 0 & -2 \\ 6 & 0 \end{bmatrix}$. Using part (a)

$$\begin{bmatrix} T\left(\begin{bmatrix} 2 & 1 \\ 3 & -2 \end{bmatrix}\right) \end{bmatrix}_B = [T]_B \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ 6 \end{bmatrix}$$

SO

$$T\left(\left[\begin{array}{cc}2&1\\3&-2\end{array}\right]\right)=0\left[\begin{array}{cc}1&0\\0&-1\end{array}\right]-2\left[\begin{array}{cc}0&1\\0&0\end{array}\right]+6\left[\begin{array}{cc}0&0\\1&0\end{array}\right]=\left[\begin{array}{cc}0&-2\\6&0\end{array}\right].$$

12. First notice that
$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} 3a & b+2c \\ 2b+c & 3d \end{bmatrix}$$
. **a.** $[T]_B = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$

The direct computation gives $T\left(\begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}\right) = \begin{bmatrix} 3 & 1 \\ 5 & 6 \end{bmatrix}$. Using the matrix in part (a) gives

$$\left[\left[\begin{array}{cc} 1 & 3 \\ -1 & 2 \end{array} \right] \right]_B = [T]_B \left[\begin{array}{cc} 1 & 3 \\ -1 & 2 \end{array} \right]_B = [T]_B \left[\begin{array}{cc} 1 \\ 3 \\ -1 \\ 2 \end{array} \right] = \left[\begin{array}{cc} 3 \\ 1 \\ 5 \\ 6 \end{array} \right], \text{ so } T \left(\left[\begin{array}{cc} 1 & 3 \\ -1 & 2 \end{array} \right] \right) = \left[\begin{array}{cc} 3 & 1 \\ 5 & 6 \end{array} \right].$$

13. a.
$$[T]_B = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$$
 b. $[T]_{B'} = \frac{1}{9} \begin{bmatrix} 1 & 22 \\ 11 & -1 \end{bmatrix}$ c. $[T]_B^{B'} = \frac{1}{9} \begin{bmatrix} 5 & -2 \\ 1 & 5 \end{bmatrix}$ d. $[T]_{B'}^B = \frac{1}{3} \begin{bmatrix} 5 & 2 \\ -1 & 5 \end{bmatrix}$ e. $[T]_C^{B'} = \frac{1}{9} \begin{bmatrix} -2 & 5 \\ 5 & 1 \end{bmatrix}$ f. $[T]_{C'}^{B'} = \frac{1}{9} \begin{bmatrix} 22 & 1 \\ -1 & 11 \end{bmatrix}$

d.
$$[T]_{B'}^{B} = \frac{1}{3} \begin{bmatrix} 5 & 2 \\ -1 & 5 \end{bmatrix}$$
 e. $[T]_{C'}^{B'} = \frac{1}{9} \begin{bmatrix} -2 & 5 \\ 5 & 1 \end{bmatrix}$ **f.** $[T]_{C'}^{B'} = \frac{1}{9} \begin{bmatrix} 22 & 1 \\ -1 & 11 \end{bmatrix}$

14. a.
$$[T]_{B}^{B''} = \begin{bmatrix} -1 & -4 \\ 1 & 3 \\ 1 & 2 \end{bmatrix}$$
 b. $[T]_{B''}^{B''} = \frac{1}{2} \begin{bmatrix} 1 & -3 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$ c. $[T]_{C}^{B''} = \begin{bmatrix} -4 & -1 \\ 3 & 1 \\ 2 & 1 \end{bmatrix}$ d. $[T]_{C'}^{B''} = \frac{1}{2} \begin{bmatrix} -3 & 1 \\ 2 & 0 \\ 1 & 1 \end{bmatrix}$

$$\mathbf{e.}[T]_{B}^{C''} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ -1 & -4 \end{bmatrix}$$

$$\textbf{15. a. } [T]_{B}^{B'} = \left[\begin{array}{c} 0 & 0 \\ 1 & 0 \\ 0 & 1/2 \end{array} \right] \textbf{b. } [T]_{C}^{B'} = \left[\begin{array}{c} 0 & 0 \\ 0 & 1 \\ 1/2 & 0 \end{array} \right] \textbf{c. } [T]_{C}^{C'} = \left[\begin{array}{c} 0 & 1 \\ 0 & 0 \\ 1/2 & 0 \end{array} \right] \textbf{d. } [S]_{B'}^{B} = \left[\begin{array}{c} 0 & 1 & 0 \\ 0 & 0 & 2 \end{array} \right]$$

e.
$$[S]_{B'}^{B}[T]_{B'}^{B'} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, [T]_{B'}^{B'}[S]_{B'}^{B} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 f. The function $S \circ T$ is the identity map, that is,

 $(S \circ T)(ax + b) = ax + b$ so S reverses the action of

$$\begin{aligned} \mathbf{16. \ a. \ } [T]_{B}^{B'} &= \frac{1}{4} \left[\begin{array}{ccccc} 2 & 0 & 0 & 2 \\ 0 & -2 & 2 & -2 \\ -3 & -1 & 1 & 2 \\ -3 & 1 & -1 & 0 \end{array} \right] \mathbf{b. \ } [T]_{B'}^{B} = \left[\begin{array}{ccccc} 2 & 0 & -2 & -2 \\ 0 & 0 & -2 & 2 \\ -1 & 0 & -1 & -1 \\ 0 & 0 & 2 & 2 \end{array} \right] \\ \mathbf{c. \ } [T]_{B'}^{B'} &= \frac{1}{4} \left[\begin{array}{ccccc} 4 & 0 & 0 & 0 \\ -2 & 0 & -6 & 2 \\ -1 & 0 & 3 & 7 \\ -3 & 0 & 5 & 1 \end{array} \right] \mathbf{d. \ } [I]_{B'}^{B'} = \frac{1}{4} \left[\begin{array}{ccccc} 2 & 0 & 0 & 2 \\ 0 & 2 & 2 & 0 \\ -1 & 1 & -1 & 1 \\ -1 & -1 & 1 & 1 \end{array} \right], [I]_{B'}^{B} &= \left[\begin{array}{ccccc} 1 & 0 & -1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & -1 & 1 \\ 1 & 0 & 1 & 1 \end{array} \right] \end{aligned}$$

17. $[T]_B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. The transformation T

19.
$$[T]_B = cI$$

21.
$$[T]_B^{B'} = [1 \ 0 \ 0 \ 1]$$

23. a.
$$[2T + S]_B = 2[T]_B + [S]_B = \begin{bmatrix} 5 & 2 \\ -1 & 7 \end{bmatrix}$$
 24. a. $[T \circ S]_B = [T]_B[S]_B = \begin{bmatrix} 3 & 1 \\ 2 & 3 \end{bmatrix}$ b. $\begin{bmatrix} -4 \\ 23 \end{bmatrix}$

25. a.
$$[S \circ T]_B = [S]_B[T]_B = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$$
 b. **26.** a. $[2T]_B = 2[T]_B = \begin{bmatrix} 2 & -2 & -2 \\ 0 & 4 & 4 \\ -2 & 2 & 2 \end{bmatrix}$ b. $\begin{bmatrix} -10 \\ 16 \end{bmatrix}$

27. a.
$$[-3T + 2S]_B = \begin{bmatrix} 3 & 3 & 1 \\ 2 & -6 & -6 \\ 3 & -3 & -1 \end{bmatrix}$$

b. $\begin{bmatrix} 3 \\ -26 \\ -9 \end{bmatrix}$

29. a.
$$[S \circ T]_B = \begin{bmatrix} 4 & -4 & -4 \\ 1 & -1 & -1 \\ -1 & 1 & 1 \end{bmatrix}$$
 b. **30.** $[T]_B = \begin{bmatrix} 4 & 0 \\ 0 & -6 \end{bmatrix}, [T^k]_B = ([T]_B)^k = \begin{bmatrix} -20 \\ -5 \\ 5 \end{bmatrix}$

18. The transformation rotates a vector by θ radians in the counterclockwise direction.

20. Since
$$T(A) = A - A^t = \begin{bmatrix} 0 & b - c \\ c - b & 0 \end{bmatrix}$$
, then $[T]_B = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

22. a.
$$[-3S]_B = -3[S]_B = -3\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 b. $\begin{bmatrix} 6 \\ -3 \end{bmatrix}$

24. a.
$$[T \circ S]_B = [T]_B[S]_B = \begin{bmatrix} 3 & 1 \\ 2 & 3 \end{bmatrix}$$
 b. $\begin{bmatrix} -3 \\ 5 \end{bmatrix}$

26. a.
$$[2T]_B = 2[T]_B = \begin{bmatrix} 2 & -2 & -2 \\ 0 & 4 & 4 \\ -2 & 2 & 2 \end{bmatrix}$$
 b. $\begin{bmatrix} -10 \\ 16 \\ 10 \end{bmatrix}$

28. a.
$$[T \circ S]_B = [T]_B[S]_B = \begin{bmatrix} 2 & 0 & -2 \\ 2 & 0 & 2 \\ -2 & 0 & 2 \end{bmatrix}$$
 b. $\begin{bmatrix} -8 \\ 4 \\ 8 \end{bmatrix}$

30.
$$[T]_B = \begin{bmatrix} 4 & 0 \\ 0 & -6 \end{bmatrix}, [T^k]_B = ([T]_B)^k = \begin{bmatrix} 4^k & 0 \\ 0 & (-6)^k \end{bmatrix}$$

32. Since *B* is the standard basis, then
$$[T(1)]_B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $[T(x)]_B = [2x]_B = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$, and $[T(x^2)]_B = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

$$[3x^2]_B = \begin{bmatrix} 0\\0\\3 \end{bmatrix}$$
, so $[T]_B = \begin{bmatrix} 1&0&0\\0&2&0\\0&0&3 \end{bmatrix}$.

33.
$$[S]_{B}^{B'} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, [D]_{B}^{B'} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}, [D]_{B}^{B'}[S]_{B}^{B'} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} = [T]_{B}$$

34. The linear operator that reflects a vector through the line perpendicular to $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, that is reflects across the line y=-x, is given by $T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -y \\ -x \end{bmatrix}$, so

$$[T]_B = \left[\begin{array}{c|c} -1 \\ -1 \end{array} \right]_B \left[\begin{array}{c} -1 \\ 0 \end{array} \right]_B = \left[\begin{array}{cc} -1 & -1 \\ 0 & 1 \end{array} \right].$$

35. If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then the matrix representation for T is $[T]_S = \begin{bmatrix} 0 & -c & b & 0 \\ -b & a - d & 0 & b \\ c & 0 & d - a & -c \\ 0 & c & -b & 0 \end{bmatrix}$.

36. Since $T(\mathbf{v}) = \mathbf{v}$ is the identity map, then

$$[T]_{B}^{B'} = [[T(\mathbf{v_1})]_{B'} [T(\mathbf{v_2})]_{B'} [T(\mathbf{v_3})]_{B'}] = [[\mathbf{v_1}]_{B'} [\mathbf{v_2}]_{B'} [\mathbf{v_3}]_{B'}] = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

If $[\mathbf{v}]_B = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$, then $[\mathbf{v}]_{B'} = \begin{bmatrix} b \\ a \\ c \end{bmatrix}$. The matrix $[T]_B^{B'}$ can be obtained from the identity matrix by interchanging the first and second columns.

Exercise Set 4.5