is a linear transformation. The null space of T, denoted by N(T), is the null space of the matrix, N(A) = $\{\mathbf{x} \in \mathbb{R}^3 \mid A\mathbf{x} = \mathbf{0}\}$. Since

$$T\left(\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right]\right) = \left[\begin{array}{ccc} 1 & 3 & 0 \\ 2 & 0 & 3 \\ 2 & 0 & 3 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right] = x_1 \left[\begin{array}{c} 1 \\ 2 \\ 2 \end{array}\right] + x_2 \left[\begin{array}{c} 3 \\ 0 \\ 0 \end{array}\right] + x_3 \left[\begin{array}{c} 0 \\ 3 \\ 3 \end{array}\right],$$

the range of T, denoted by R(T) is the column space of A, col(A). Since

$$\begin{bmatrix} 1 & 3 & 0 \\ 2 & 0 & 3 \\ 2 & 0 & 3 \end{bmatrix} \xrightarrow{\text{reduces to}} \begin{bmatrix} 1 & 3 & 0 \\ 0 & -6 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

the homogeneous equation $A\mathbf{x}=\mathbf{0}$ has infinitely many solutions given by $x_1=-\frac{3}{2}x_3, x_2=\frac{1}{2}x_3,$ and x_3 a free variable. So the null space is $\left\{t \begin{bmatrix} -3/2 \\ 1/2 \\ 1 \end{bmatrix} \middle| t \in \mathbb{R} \right\}$, which is a line that passes through the origin in three space. Also since the pivots in the reduced matrix are in columns one and two, a basis for the and hence, the range is a plane in three space. Notice that in this example, $3 = \dim(\mathbb{R}^3) = \dim(R(T)) + \dim(N(T))$. This is a fundamental theorem that if $T: V \longrightarrow W$ is a linear transformation defined on finite dimensional vector spaces, then

$$\dim(V) = \dim(R(T)) + \dim(N(T)).$$

If the mapping is given as a matrix product $T(\mathbf{v}) = A\mathbf{v}$ such that A is a $m \times n$ matrix, then this result is written as

$$n = \operatorname{rank}(A) + \operatorname{nullity}(A)$$
.

A number of useful statements are added to the list of equivalences concerning $n \times n$ linear systems:

A is invertible $\Leftrightarrow A\mathbf{x} = \mathbf{b}$ has a unique solution for every $\mathbf{b} \Leftrightarrow A\mathbf{x} = \mathbf{0}$ has only the trivial solution

 $\Leftrightarrow A$ is row equivalent to $I \Leftrightarrow \det(A) \neq 0 \Leftrightarrow$ the column vectors of A are linearly independent

 \Leftrightarrow the column vectors of A span $\mathbb{R}^n \Leftrightarrow$ the column vectors of A are a basis for \mathbb{R}^n

 $\Leftrightarrow \operatorname{rank}(A) = n \Leftrightarrow R(A) = \operatorname{col}(A) = \mathbb{R}^n \Leftrightarrow N(A) = \{0\} \Leftrightarrow \operatorname{row}(A) = \mathbb{R}^n$

 \Leftrightarrow the number of pivot columns in the row echelon form of A is n.

Solutions to Exercises

1. Since
$$T(\mathbf{v}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, \mathbf{v} is in $N(T)$.

3. Since
$$T(\mathbf{v}) = \begin{bmatrix} -5 \\ 10 \end{bmatrix}$$
, \mathbf{v} is not in $N(T)$.

4. Since $T(\mathbf{v}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, \mathbf{v} is in $N(T)$.

5. Since
$$p'(x) = 2x - 3$$
 and $p''(x) = 2$, then $T(p(x)) = 2x$, so $p(x)$ is not in $N(T)$.

6. Since $p'(x) = 5$ and $p''(x) = 0$, then $T(p(x)) = 0$, so $p(x)$ is in $N(T)$.

7. Since
$$T(p(x)) = -2x$$
, then $p(x)$ is not in 8. Since $T(p(x)) = 0$, then $p(x)$ is in $N(T)$.

2. Since
$$T(\mathbf{v}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, \mathbf{v} is in $N(T)$.

4. Since
$$T(\mathbf{v}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, \mathbf{v} is in $N(T)$

6. Since
$$p'(x) = 5$$
 and $p''(x) = 0$, then $T(p(x)) = 0$, so $p(x)$ is in $N(T)$.

8. Since
$$T(p(x)) = 0$$
, then $p(x)$ is in $N(T)$

9. Since
$$\begin{bmatrix} 1 & 0 & 2 & 1 \\ 2 & 1 & 3 & 3 \\ 1 & -1 & 3 & 0 \end{bmatrix} \xrightarrow{\text{reduces to}} \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -1 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \text{ there are infinitely many vectors that are mapped}$$

$$\text{to } \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix} \text{ . For example, } T \left(\begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix} \text{ and hence, } \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix} \text{ is in } R(T).$$

10. Since
$$\begin{bmatrix} 1 & 0 & 2 & 2 \\ 2 & 1 & 3 & 3 \\ 1 & -1 & 3 & 4 \end{bmatrix} \xrightarrow{\text{reduces to}} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 the linear system is inconsistent, so the vector
$$\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$
 is not in $R(T)$.

11. Since
$$\begin{bmatrix} 1 & 0 & 2 & | & -1 \\ 2 & 1 & 3 & | & 1 \\ 1 & -1 & 3 & | & -2 \end{bmatrix}$$
 reduces to $\begin{bmatrix} 1 & 0 & 2 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{bmatrix}$, the linear system is inconsistent, so the vector $\begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}$ is not in $R(T)$.

12. Since
$$\begin{bmatrix} 1 & 0 & 2 & | & -2 \\ 2 & 1 & 3 & | & -5 \\ 1 & -1 & 3 & | & -1 \end{bmatrix} \xrightarrow{\text{reduces to}} \begin{bmatrix} 1 & 0 & 2 & | & -2 \\ 0 & 1 & -1 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$
 there are infinitely many vectors that are mapped to
$$\begin{bmatrix} -2 \\ -5 \\ 1 \end{bmatrix}$$
 and hence, the vector
$$\begin{bmatrix} -2 \\ -5 \\ -1 \end{bmatrix}$$
 is in $R(T)$.

13. The matrix A is in R(T).

- 14. The matrix A is not in R(T).
- 15. The matrix A is not in R(T).
- 16. The matrix A is in R(T).
- 17. A vector $\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$ is in the null space, if and only if 3x + y = 0 and y = 0. That is, $N(T) = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$ Hence, the null space has dimension 0, so does not have a basis.
- 18. A vector is in the null space if and only if $\begin{cases} -x+y = 0 \\ x-y = 0 \end{cases}$, that is x = y. Therefore, $N(T) = \begin{cases} \begin{bmatrix} a \\ a \end{bmatrix} & a \in \mathbb{R} \end{cases}$ and hence, a basis is $\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$.
- 19. Since $\begin{bmatrix} x+2z \\ 2x+y+3z \\ x-y+3z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ if and only if x=-2z and y=z every vector in the null space has the form $\begin{bmatrix} -2z \\ z \\ z \end{bmatrix}$. Hence, a basis for the null space is $\left\{ \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} \right\}$.

20. Since
$$\begin{bmatrix} -2 & 2 & 2 \\ 3 & 5 & 1 \\ 0 & 2 & 1 \end{bmatrix}$$
 reduces to $\begin{bmatrix} 1 & 0 & -1/2 \\ 0 & 1 & 1/2 \\ 0 & 0 & 0 \end{bmatrix}$, then $N(T) = \left\{ t \begin{bmatrix} 1/2 \\ -1/2 \\ 1 \end{bmatrix} \middle| t \in \mathbb{R} \right\}$ and a basis for the null space is $\left\{ \begin{bmatrix} 1/2 \\ -1/2 \\ 1 \end{bmatrix} \right\}$.

21. Since
$$N(T) = \left\{ \begin{bmatrix} 2s+t \\ s \\ t \end{bmatrix} \middle| s, t \in \mathbb{R} \right\}$$
, a **22.** A basis for the null space is $\left\{ \begin{bmatrix} -5 \\ 6 \\ 1 \\ 0 \end{bmatrix} \right\}$. basis for the null space is $\left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$.

23. Since T(p(x)) = 0 if and only if p(0) = 0 a polynomial is in the null space if and only if it has the form $ax^2 + bx$. A basis for the null space is $\{x, x^2\}$.

24. If $p(x) = ax^2 + bx + c$, then p'(x) = 2ax + b and p''(x) = 2a, so T(p(x)) = 0 if and only if a = 0. A basis for the null space is $\{1, x\}$.

25. Since $\det \begin{pmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 2 & 0 & 1 \end{bmatrix} \end{pmatrix} = -5$, the column vectors of the matrix are a basis for the column space of the matrix. Since the column space of the matrix is R(T), then a basis for the range of T is $\left\{ \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \right\}$.

26. Since $\begin{bmatrix} 1 & -2 & -3 & 1 & 5 \\ 3 & -1 & 1 & 0 & 4 \\ 1 & 1 & 3 & 1 & 2 \end{bmatrix} \xrightarrow{\text{reduces to}} \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 2 & 0 & -1 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$ and the pivots are in columns one, two,

and four, then a basis for the column space of A and hence, for R(T), is $\left\{ \begin{bmatrix} 1\\3\\1 \end{bmatrix}, \begin{bmatrix} -2\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$.

27. Since the range of T is the xy-plane in \mathbb{R}^3 , a basis for the range is $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$.

28. Since $\begin{bmatrix} x-y+3z \\ x+y+z \\ -x+3y-5z \end{bmatrix} = x \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix} + z \begin{bmatrix} 3 \\ 1 \\ -5 \end{bmatrix}$ and the three vectors are linearly independent, then a basis for R(T) is $\left\{ \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ -5 \end{bmatrix} \right\}$.

29. Since $R(T) = \mathcal{P}_2$, then a basis for the range is $\{1, x, x^2\}$.

$$R(T) = \{p(x) \mid p(x) = ax^2 + bx + a = a(x^2 + 1) + bx\},\$$

then a basis for R(T) is $\{x, x^2 + 1\}$.

31. a. The vector **w** is in the range of T if the linear system

$$c_1 \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} + c_3 \begin{bmatrix} -2 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} -6 \\ 5 \\ 0 \end{bmatrix}$$

has a solution. But $\begin{bmatrix} -2 & 0 & -2 & | & -6 \\ 1 & 1 & 2 & | & 5 \\ 1 & -1 & 0 & | & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} -2 & 0 & -2 & | & -6 \\ 0 & 1 & 1 & | & 2 \\ 0 & 0 & 0 & | & -1 \end{bmatrix}$, so that the linear system is inconsistent. Hence, $\begin{bmatrix} -6 \\ 5 \\ 0 \end{bmatrix}$ is not in R(t).

b. Since $\begin{vmatrix} -2 & 0 & -2 \\ 1 & 1 & 2 \\ 1 & -1 & 0 \end{vmatrix} = 0$, the column vectors are linearly dependent. To trim the vectors to a basis for the range, we have that $\begin{bmatrix} -2 & 0 & -2 \\ 1 & 1 & 2 \\ 1 & -1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} -2 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. Since the pivots are in columns one and

two, a basis for the range is $\left\{ \begin{bmatrix} -2\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \right\}$. c. Since $\dim(N(T)) + \dim(R(T)) = \dim(\mathbb{R}^3) = 3$ and

- $\dim(R(T)) = 2, \text{ then } \dim(N(T)) = 1.$ **32.** a. The vector $\begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$ is in R(T). b. $\left\{ \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix} \right\}$ $\dim(N(T)) + \dim(\vec{R}(T)) = 3$ and $\dim(R(T)) = 3$, then $\dim(\vec{N}(T)) = 0$.
- 33. a. The polynomial $2x^2 4x + 6$ is not in R(T). b. Since the null space of T is the set of all constant functions, then $\dim(N(T)) = 1$ and hence, $\dim(R(T)) = 2$. A basis for the range is $\{T(x), T(x^2)\} = 1$ $\{-2x+1, x^2+x\}$.
- **34.** a. The polynomial x^2-x-2 is not in R(T). b. Since the null space of T is the set of all polynomials of the form ax^2 , then $\dim(N(T)) = 1$ and hence, $\dim(R(T)) = 2$. A basis for the range is $\{T(1), T(x)\} = \{x^2, x - 1\}$.
- 35. Any linear transformations that maps three space to the entire xy-plane will work. For example, the mapping to the xy-plane is $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x \\ y \end{bmatrix}$.
- **36.** Define $T: \mathbb{R}^2 \to \mathbb{R}^2$, by $T\left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} y \\ 0 \end{bmatrix}$. Then $N(T) = \left\{ \begin{bmatrix} x \\ 0 \end{bmatrix} \middle| x \in \mathbb{R} \right\} = R(T)$.
- 37. a. The range R(T) is the subspace of \mathcal{P}_n consisting of all polynomials of degree n-1 or less. b. c. Since $\dim(R(T)) + \dim(N(T)) = \dim(\mathcal{P}_n) = n+1$, then $\dim(N(T)) = 1$.
- 38. A polynomial is in the null space provided it **39.** a. $\dim(R(T)) = 2$ **b.** $\dim(N(T)) = 1$ has degree k-1 or less. Hence $\dim(N(T)) = k$.
- **40.** Since $\dim(V) = \dim(N(T)) + \dim(R(T)) = 2\dim(N(T))$, then the dimension of V is an even number.
- 41. If $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then $T(B) = AB BA = \begin{bmatrix} 0 & 2b \\ -2c & 0 \end{bmatrix}$, so that $N(T) = \left\{ \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} \middle| a, d \in \mathbb{R} \right\} = \left\{ a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \middle| a, d \in \mathbb{R} \right\}.$ Hence a basis for N(T) is $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$
- **42.** If B is an $n \times n$ matrix, then $T(B^t) = (B^t)^t = B$ and hence, $R(T) = M_{n \times n}$.
- 43. a. Notice that $(A+A^t)^t = A^t + A = A + A^t$, so that the range of T is a subset of the symmetric matrices. Also if B is any symmetric matrix, then $T\left(\frac{1}{2}B\right) = \frac{1}{2}B + \frac{1}{2}B^t = B$. Therefore, R(T) is the set of all symmetric matrices. b. Since a matrix A is in N(T) if and only if $\tilde{T}(A) = A + A^t = 0$, which is if and only if $A = -A^t$, then the null space of T is the set of skew-symmetric matrices.
- 44. a. Notice that $(A-A^t)^t = A^t A = -(A-A^t)$, so that the range of T is a subset of the skew-symmetric matrices. Also if B is any skew-symmetric matrix, then $T(\frac{1}{2}B) = \frac{1}{2}B - \frac{1}{2}B^t = B$. Therefore, R(T) is the set of all skew-symmetric matrices. b. Since a matrix A is in N(T) if and only if $T(A) = A - A^t = 0$, which is if and only if $A = A^t$, then the null space of T is the set of symmetric matrices.
- **45.** If the matrix A is invertible and B is any $n \times n$ matrix, then $T(A^{-1}B) = A(A^{-1}B) = B$, so $R(T) = M_{n \times n}$.
- 46. a. A basis for the range of T consists of the column vectors of A corresponding to the pivot columns of the echelon form of A. Any zero rows of A correspond to diagonal entries that are 0, so the echelon form of A will have pivot columns corresponding to each nonzero diagonal term. Hence, the range of T is spanned by the nonzero column vectors of A and the number of nonzero vectors equals the number of pivot columns b. Since $\dim(N(T)) = n = \dim(R(T))$, then the dimension of the null space of T is the number of zeros on the diagonal.