Chapter 3

Vectors and
Two-Dimensional Motion

Vector vs. Scalar Review

- All physical quantities encountered in this text will be either a scalar or a vector
- A vector quantity has both magnitude (size) and direction
- A scalar is completely specified by only a magnitude (size)

Vector Notation

- When handwritten, use an arrow: $\overrightarrow{\mathrm{A}}$
- When printed, will be in bold print with an arrow: $\overrightarrow{\mathbf{A}}$
- When dealing with just the magnitude of a vector in print, an italic letter will be used: A
- Italics will also be used to represent scalars

Properties of Vectors

- Equality of Two Vectors
- Two vectors are equal if they have the same magnitude and the same direction
- Movement of vectors in a diagram
- Any vector can be moved parallel to itself without being affected

More Properties of Vectors

- Negative Vectors
- Two vectors are negative if they have the same magnitude but are 180° apart (opposite directions)
- $\overrightarrow{\mathbf{A}}=-\overrightarrow{\mathbf{B}} ; \overrightarrow{\mathbf{A}}+(-\overrightarrow{\mathbf{A}})=0$
- Resultant Vector
- The resultant vector is the sum of a given set of vectors
- $\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$

Adding Vectors

- When adding vectors, their directions must be taken into account
- Units must be the same
- Geometric Methods
- Use scale drawings
- Algebraic Methods
- More convenient

Adding Vectors Geometrically (Triangle or Polygon Method)

- Choose a scale
- Draw the first vector with the appropriate length and in the direction specified, with respect to a coordinate system
- Draw the next vector using the same scale with the appropriate length and in the direction specified, with respect to a coordinate system whose origin is the end of vector $\overrightarrow{\mathbf{A}}$ and parallel to the coordinate system used for $\overrightarrow{\mathbf{A}}$

Graphically Adding
 Vectors, cont.

- Continue drawing the vectors "tip-totail"
- The resultant is drawn from the origin of \mathbf{A} to the end of the last vector
- Measure the length of \mathbf{R} and its angle
- Use the scale factor to convert length to actual magnitude

(b)

Graphically Adding

 Vectors, cont.- When you have many vectors, just keep repeating the process until all are included
- The resultant is still drawn from the origin of the first vector to the end of the last vector

Notes about Vector

 Addition- Vectors obey the Commutative Law of Addition
- The order in which the vectors are added doesn't affect the result
" $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}$

(a)

(b)

Vector Subtraction

- Special case of vector addition
- Add the negative of the subtracted vector
- $\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{A}}+(-\overrightarrow{\mathbf{B}})$
- Continue with standard vector addition procedure

Multiplying or Dividing a

 Vector by a Scalar- The result of the multiplication or division is a vector
- The magnitude of the vector is multiplied or divided by the scalar
- If the scalar is positive, the direction of the result is the same as of the original vector
- If the scalar is negative, the direction of the result is opposite that of the original vector

Components of a Vector

- A component is a part
- It is useful to use rectangular components
- These are the projections of the vector along the x - and y-axes

Components of a Vector,

 cont.- The x-component of a vector is the projection along the x -axis $\mathrm{A}_{x}=\mathrm{A} \cos \theta$
- The y-component of a vector is the projection along the y-axis
$\mathrm{A}_{\mathrm{y}}=\mathrm{A} \sin \theta$
- Then, $\overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{A}}_{\mathrm{x}}+\overrightarrow{\mathbf{A}}_{\mathrm{y}}$

More About Components of a Vector

- The previous equations are valid only if θ is measured with respect to the x-axis
- The components can be positive or negative and will have the same units as the original vector

More About Components,

 cont.- The components are the legs of the right triangle whose hypotenuse is $\overrightarrow{\mathbf{A}}$

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}} \quad \text { and } \quad \theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)
$$

- May still have to find θ with respect to the positive x-axis
- The value will be correct only if the angle lies in the first or fourth quadrant
- In the second or third quadrant, add 180°

Other Coordinate Systems

- It may be convenient to use a coordinate system other than horizontal and vertical
- Choose axes that are perpendicular to each other
- Adjust the components accordingly

Adding Vectors Algebraically

- Choose a coordinate system and sketch the vectors
- Find the x - and y-components of all the vectors
- Add all the x-components
- This gives R_{x} :
$\mathrm{R}_{\mathrm{x}}=\sum \mathrm{v}_{\mathrm{x}}$

Adding Vectors

 Algebraically, cont.- Add all the y-components
- This gives R_{y} : $\mathrm{R}_{\mathrm{y}}=\sum \mathrm{v}_{\mathrm{y}}$
- Use the Pythagorean Theorem to find the magnitude of the resultant: $R=\sqrt{R_{x}^{2}+R_{y}^{2}}$
- Use the inverse tangent function to find the direction of R :

$$
\theta=\tan ^{-1} \frac{R_{y}}{R_{x}}
$$

Motion in Two Dimensions

- Using + or - signs is not always sufficient to fully describe motion in more than one dimension
- Vectors can be used to more fully describe motion
- Still interested in displacement, velocity, and acceleration

Displacement

- The position of an object is described by its position vector, $\overrightarrow{\mathbf{r}}$
- The displacement of the object is defined as the change in its position
- $\Delta \overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}}_{f}-\overrightarrow{\mathbf{r}}_{i}$

Velocity

- The average velocity is the ratio of the displacement to the time interval for the displacement

$$
\overrightarrow{\mathbf{v}}_{\mathrm{av}} \equiv \frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta \mathrm{t}}
$$

- The instantaneous velocity is the limit of the average velocity as Δt approaches zero
- The direction of the instantaneous velocity is along a line that is tangent to the path of the particle and in the direction of motion

Acceleration

- The average acceleration is defined as the rate at which the velocity changes

$$
\overrightarrow{\mathbf{a}}_{\mathrm{av}}=\frac{\Delta \overrightarrow{\mathbf{v}}}{\Delta \mathrm{t}}
$$

- The instantaneous acceleration is the limit of the average acceleration as Δt approaches zero

Unit Summary (SI)

- Displacement
- m
- Average velocity and instantaneous velocity - m/s
- Average acceleration and instantaneous acceleration
- m/s ${ }^{2}$

Ways an Object Might Accelerate

- The magnitude of the velocity (the speed) can change
- The direction of the velocity can change
. Even though the magnitude is constant
- Both the magnitude and the direction can change

Projectile Motion

- An object may move in both the x and y directions simultaneously - It moves in two dimensions
- The form of two dimensional motion we will deal with is an important special case called projectile motion

Assumptions of Projectile Motion

- We may ignore air friction
- We may ignore the rotation of the earth
- With these assumptions, an object in projectile motion will follow a parabolic path

Rules of Projectile Motion

- The x - and y-directions of motion are completely independent of each other
- The x-direction is uniform motion - $a_{x}=0$
- The y-direction is free fall - $a_{y}=-g$
- The initial velocity can be broken down into its x - and y-components
- $\mathrm{v}_{\mathrm{ox}}=\mathrm{v}_{\mathrm{o}} \cos \theta_{\mathrm{o}} \quad \mathrm{v}_{\mathrm{oy}}=\mathrm{v}_{\mathrm{o}} \sin \theta_{\mathrm{o}}$

Projectile Motion

Projectile Motion at Various Initial Angles

- Complementary values of the initial angle result in the same range
- The heights will be different
- The maximum range occurs at a projection angle
 of 45°

Some Details About the Rules

- x-direction
- $a_{x}=0$
- $v_{x}=v_{o_{x}}=v_{o} \cos \theta_{o}=$ constant
- $\mathrm{X}=\mathrm{v}_{\mathrm{ox}} \mathrm{t}$
- This is the only operative equation in the x-direction since there is uniform velocity in that direction

More Details About the

Rules

- y-direction
- $v_{o_{y}}=v_{o} \sin \theta_{o}$
- Free fall problem
- a = -g
- Take the positive direction as upward
- Uniformly accelerated motion, so the motion equations all hold

Velocity of the Projectile

- The velocity of the projectile at any point of its motion is the vector sum of its x and y components at that point

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}} \quad \text { and } \quad \theta=\tan ^{-1} \frac{v_{y}}{v_{x}}
$$

- Remember to be careful about the angle's quadrant

Projectile Motion Summary

- Provided air resistance is negligible, the horizontal component of the velocity remains constant
- Since $\mathrm{a}_{\mathrm{x}}=0$
- The vertical component of the velocity v_{y} is equal to the free fall acceleration -g

Projectile Motion Summary, cont

- The vertical component of the velocity v_{y} and the displacement in the y-direction are identical to those of a freely falling body
- Projectile motion can be described as a superposition of two independent motions in the x - and y-directions

Problem-Solving Strategy

- Select a coordinate system and sketch the path of the projectile
- Include initial and final positions, velocities, and accelerations
- Resolve the initial velocity into x and y-components
- Treat the horizontal and vertical motions independently

Problem-Solving Strategy, cont

- Follow the techniques for solving problems with constant velocity to analyze the horizontal motion of the projectile
- Follow the techniques for solving problems with constant acceleration to analyze the vertical motion of the projectile

Some Variations of Projectile Motion

- An object may be fired horizontally
- The initial velocity is all in the $x-$ direction
- $\mathrm{v}_{\mathrm{o}}=\mathrm{v}_{\mathrm{x}}$ and $\mathrm{v}_{\mathrm{y}}=0$
- All the general rules of projectile motion apply

Non-Symmetrical
 Projectile Motion

- Follow the general rules for projectile motion
- Break the y-direction into parts
- up and down
- symmetrical back to initial height and then the rest of the height

Special Equations

- The motion equations can be combined algebraically and solved for the range and maximum height

$$
\begin{aligned}
& \Delta x=\frac{v_{o}^{2} \sin 2 \theta_{o}}{g} \\
& \Delta y_{\max }=\frac{v_{o}^{2} \sin ^{2} \theta_{o}}{g}
\end{aligned}
$$

Centripetal Acceleration

- An object traveling in a circle, even though it moves with a constant speed, will have an acceleration
- The centripetal acceleration is due to the change in the direction of the velocity

Centripetal Acceleration,

 cont.- Centripetal refers to "centerseeking"
- The direction of the velocity changes
- The acceleration is directed toward the center of the circle of motion

(b)

Centripetal Acceleration, final

- The magnitude of the centripetal acceleration is given by
-

$$
a_{c}=\frac{v^{2}}{r}
$$

- This direction is toward the center of the circle

centripetal Acceleration and

 Angular VelocityThe angular velocity and The centripetal acceleration can also be related to the angular velocity and the linear velocity are related

- ($v=\omega r$)
- The centripetal acceleration can also be related to the angular velocity

$$
a_{C}=\frac{v^{2}}{r}=\frac{r^{2} \omega^{2}}{r}=r \omega^{2}
$$

