Equation Sheet PHYS 221

Elementary charge: $1.602 \times 10^{-19} \mathrm{C}$
Mass of an electron: $9.11 \times 10^{-31} \mathrm{~kg}$
Mass of a proton: $1.673 \times 10^{-27} \mathrm{~kg}$
$\varepsilon_{o}=8.85 \times 10^{-12} \frac{C^{2}}{N \cdot m^{2}}$
$k=8.99 \times 10^{9} \frac{N \cdot m^{2}}{C^{2}}$
$g=9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$\mu_{o}=4 \pi \times 10^{-7} \frac{T \cdot m}{A}$
$c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$F=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{o} r^{2}}$
Discharging a Capacitor
$\vec{F}=q \vec{E}$
$E=\frac{q}{4 \pi \varepsilon_{o} r^{2}}$
$\Phi_{E}=E A \cos \theta$
$\Phi_{E}=\frac{q_{e n c}}{\varepsilon_{o}}$
$\Delta V=\frac{Q}{C}$
$C=\frac{\varepsilon_{o} A}{d}$
$V=\frac{P E_{\text {elec }}}{q}$
$E=-\frac{\Delta V}{\Delta x}$

$$
\begin{aligned}
& I=\frac{\Delta q}{\Delta t} \\
& V=I R \\
& R=\rho \frac{L}{A} \\
& P=I V
\end{aligned}
$$

Charging a Capacitor
$q=C V_{\text {cap }}=C \varepsilon\left(1-e^{-t / \tau}\right)$
$I=\frac{\varepsilon}{R} e^{-t / \tau}$
$V_{c a p}=\varepsilon\left(1-e^{-t / \tau}\right)$
$q=C \varepsilon e^{-t / \tau}$
$I=\frac{-\varepsilon}{R} e^{-t / \tau}$
$V_{c a p}=\frac{Q}{C}=\varepsilon e^{-t / \tau}$
$\mathrm{PE}_{\text {cap }}=\frac{1}{2} Q \Delta V=\frac{1}{2} C(\Delta V)^{2}=\frac{1}{2} \frac{Q^{2}}{C}$
Capacitors in Series: $\frac{1}{C_{\text {equiv }}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots$
Capacitors in Parallel: $C_{\text {equiv }}=C_{1}+C_{2}+\ldots$
Resistors in Parallel: $\frac{1}{R_{\text {equiv }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots$
Resistors in Series: $R_{\text {equiv }}=R_{1}+R_{2}+\ldots$

$$
\begin{aligned}
& \sum_{\substack{\text { closed } \\
\text { path }}} B_{\|} \Delta L=\mu_{o} I_{\text {enc }} \\
& F_{B}=q v B \sin \theta \\
& F_{\text {on wire }}=I L B \sin \theta
\end{aligned}
$$

Magnetic Field Near a Long Wire $B=\frac{\mu_{o} I}{2 \pi r}$
Magnetic Field of a Current Loop $B=\frac{\mu_{o} I}{2 R}$
Magnetic Field inside a Solenoid $B=\frac{\mu_{0} N I}{L}$

Equation Sheet PHYS 221 for Final Exam on December 11, 2012

Elementary charge: $1.6 x$
Mass of an electron: 9
Mass of a proton: $1.673 x$
$\varepsilon_{o}=8.85 \times 10^{-12} \frac{C^{2}}{N \cdot m^{2}}$
$k=8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{C^{2}}$
$g=9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$\mu_{o}=4 \pi \times 10^{-7} \frac{T \cdot m}{A}$
$c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& c=\frac{1}{\sqrt{\varepsilon_{o} \mu_{o}}}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& E_{o}=c B_{o} \\
& I=\frac{1}{2} \varepsilon_{0} c E^{2}
\end{aligned}
$$

$$
I_{\text {out }}=I_{\text {in }} \cos ^{2} \theta
$$

$$
\text { Intensity }=\frac{\text { Power }}{\text { Area }}
$$

$$
\begin{aligned}
& n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \\
& \frac{1}{s_{o}}+\frac{1}{s_{i}}=\frac{1}{f} \quad m=-\frac{s_{i}}{s_{o}} \\
& d \sin \theta=m \lambda \\
& \sin \theta_{R}=1.22 \frac{\lambda}{D}
\end{aligned}
$$

$F=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{o} r}$
$\vec{F}=q \vec{E}$
$E=\frac{q}{4 \pi \varepsilon_{o} r^{2}}$
$\Phi_{E}=E A \cos \theta$
$\Phi_{E}=\frac{q_{e n c}}{\varepsilon_{o}}$
$\Delta V=\frac{Q}{C}$
$C=\frac{\varepsilon_{o} A}{d}$
$V=\frac{P E_{\text {elec }}}{q}$
$E=-\frac{\Delta V}{\Delta x}$
$I=\frac{\Delta q}{\Delta t}$
$V=I R$
$R=\rho \frac{L}{A}$
$P=I V$

$$
\Phi_{B}=B A \cos \theta
$$

$$
\varepsilon=N B A \omega \sin (\omega t)
$$

$$
P E_{\operatorname{mag}}=\frac{1}{2 \mu_{o}} B^{2}
$$

$$
V_{L}=L \frac{\Delta I}{\Delta t}
$$

$$
P E_{\text {ind }}=\frac{1}{2} L I^{2}
$$

Charging an RL circuit

$$
I=\frac{V}{R}\left(1-e^{-t / \tau}\right)
$$

$$
\begin{aligned}
& V=V_{\max } \sin (2 \pi f t) \\
& V_{r m s}=\frac{V_{\max }}{\sqrt{2}} \\
& P_{\text {ave }}=V_{r m s} I_{r m s} \\
& I_{\max }=\frac{V_{\max }}{X_{C}} \quad X_{C}=\frac{1}{2 \pi f C} \\
& I_{\max }=\frac{V_{\max }}{X_{L}} \quad X_{L}=2 \pi f L \\
& q=q_{\max } \cos (2 \pi f t) \quad \mathrm{I}=I_{\max } \sin (2 \pi f t) \\
& f_{\text {res }}=\frac{1}{2 \pi \sqrt{L C}} \\
& V=I Z
\end{aligned}
$$

