

L E B A N E S E A M E R I C A N U N I V E R S I T Y

Electrical and Computer Engineering Dept
COE 312

Data Structures

Fall 2013
W. FAWAZ

Project I

I. Objective

In this project, you will develop a software tool that uses a provider of metrological
content to display a map showing a 5-day forecast for the major cities around
the world. In particular, the cities that will be targeted by this “Capital Weather
Forecast Tool” are, as the name of the tool suggests, the country capital cities from
all over the world.

This somewhat complicated task will be decomposed into three smaller
manageable subtasks to make the process of developing this software tool
possible.

The proposed implementation strategy is built upon two main pillars, namely the
use of a “divide and conquer”-like approach to solve the problem and the gradual
integration of features into the “Capital Weather Forecast Tool”.

The details pertaining to the aforementioned three tasks are provided in what
follows.

II. First task

Your first task would be to use the Google Geocoding API to map the names of all
of the capital cities that exist in the world into geographic coordinates (like latitude
37.423021 and longitude-122.083739). The resulting coordinates will serve as an
input for the second task, where you will use the coordinates to obtain the 5-day
weather forecast for each capital city.

Translating an address to a pair of geographic coordinates involves using the Google
Geocoding API that provides a means for accessing a geocoder as explained at:

https://developers.google.com/maps/documentation/geocoding/#XML

As illustrated in this webpage, an XML response containing the geographic
coordinates can be fetched from the geocoding API. Although it is possible to get a
JSON version of the coordinates; for this task, an XML version of the coordinates
should be requested from the API. Once the XML-formatted coordinates have
been received your next step would be to extract the latitude and longitude
coordinates contained inside the received XML response. Armed with these two
pieces of information, you will be able to attack the second task of this project.

To accomplish this first task, you are required to use the JDOM parser to extract
the desired information from the retrieved feed. It goes without saying that this can
be achieved only after you study carefully the structure of the XML feed with the
purpose of identifying the tags enclosing the location-related information for each
city. Once you have successfully extracted the information, you would be ready to
tackle the second task whose guidelines are delineated in the following section.

The process explained above should be repeated for each of the capital cities.

III. Second task

For the second task, your job is to find a JSON feed allowing for the retrieval of
meteorological data for cities across the globe and more importantly one supplying
forecast weather data for these cities. Once you have located a content provider that
meets these requirements, you can proceed to connecting to the identified JSON
feed and parse it. The main purpose of the parsing process is to extract the weather
forecast data in terms for instance temperature values, wind speed, humidity and
rainfall levels (if possible) for each country capital. The content provider should be
able to generate the JSON feed based on the GPS coordinates that resulted from the
first task. That is, you are required to submit to the content provider the longitude
and latitude information retrieved earlier to get the weather forecast data pertaining
to the capital city that corresponds to these longitude and latitude pieces of data.

What makes this task very challenging is the fact that you are required to: a) do
some research on your own with a view to finding an appropriate content provider;
b) then, use the information generated by the first task to query the content
provider for JSON-formatted weather forecast data; c) and finally, extract the
forecast data of interest, i.e. the ones relating to a time window that is 5 days long
and particularly targeting the next 5 days.

IV. Third task

At this stage, you are assumed to have completed the first two tasks correctly.
This is particularly true since the third task will make heavy use of the latitude and
longitude information generated by the first task and of the weather forecast
data produced by the second task. Your job at this point is to integrate into your
Java application a map with a set of markers showing the locations associated with
the latitude and longitude coordinates resulting from the first task. For
illustration purposes, I am enclosing on the next page a map view displaying a
yellow marker that points to the city of Jounieh, Lebanon.

You have to produce a similar view but with several markers pinpointing the
positions of the capital cities. In addition to the markers, you are required to couple
each capital city with a summary list presenting the meteorological data
characterizing the weather condition of that city over the next 5 days. Specifically,
for each city you should supply a summary list reporting information about the
expected temperature values, wind speed, humidity and rainfall levels for the next 5
days. Image icons capturing the reported weather condition should also be added
to the map. In other words, an icon showing the sun should be placed next to a set
of meteorological data suggesting a hot weather and one showing a cloud should be
inserted next to a set indicating a cold weather condition, and so on and so forth.

To add a map to your java application, you can use the JMapViewer java
component. The following URL: http://wiki.openstreetmap.org/wiki/JMapViewer is a
good source of information in this regard. The external library (.jar file) that
contains the JMapViewer java class can be downloaded from:

http://svn.openstreetmap.org/applications/viewer/jmapviewer/releases/2011-02-
19/JMapViewer.zip

Moreover, the HTML documentation for the JMapViewer class and other relevant
classes can be found at: http://josm.openstreetmap.de/doc/. This URL is very
important as it will allow you to gain a deeper understanding of both the JMapViewer
class and the other classes that might be needed to accomplish the third task.

What to turn in?

This project is due at the beginning of class on the due date. You have to turn in the
following material in both hard and soft copies.

Criteria Percentage
Documentation of your solution including explanations and
illustrations in one or two pages along with short write-up of
questions and/or problems that you encountered while doing this
assignment.

2 pts (10%)

Source code that contains an appropriate amount of comments.
Well-organized and correct code receives 16 pts, messy yet working
code receives 10 pts, code with bugs receives 2 pts, and incomplete
code receives 1 pt.

16 pts (80 %)

Execution output such as a snapshot of the contents of standard
output. A correct output receives 2 pts, the one with minor errors
receives 1 pt, and an incomplete output receives 0 pts.

2 pts (10%)

Total 20 pts (100%)

Good Luck!

