9
6

COE 312 – Data Structures
Welcome to Exam II
Tuesday January 08, 2013
Instructor: Dr. Wissam F. Fawaz

Name: _______________________
Student ID: ________________

Instructions:
1. This exam is Closed Book. Please do not forget to write your name and ID on the first page.
2. You have exactly 85 minutes to complete the 5 required problems.
3. Read each problem carefully. If something appears ambiguous, please write your assumptions.
4. Points allocated to each problem are shown in square brackets.
5. Put your answers in the space provided only. No other spaces will be graded or even looked at.
Good Luck!!
Problem 1: Multiple Choice Questions (20 minutes) [16 points]
In the following questions, check the single answer that seems to be correct.
1) Which of the following is used to begin exception propagation?

a. propagate

b. throws

c. relay

d. None of the above

2) Consider a circular array implementation of the queue ADT with 11 items stored at arr[2] (rear) through arr[12] (front). If the capacity of the arr array is 13, where does the enqueue method place a new element in the array?

a. arr[0]
b. arr[13]

c. arr[2]

d. None of the above
3) Which of the following exception types are unchecked?
a. NullPointerException

b. Arithmetic Exception

c. InputMismatchException

d. All of the above

4) Consider the tail reference of an empty singly linked list. Which of the following conditions is true about tail?
a. tail == null
b. tail == head
c. All of the above
d. None of the above
5) The comparator interface contains which of the following methods?

a. equals
b. compare

c. compareTo
d. None of the above
6) In a stack implemented with a singly linked list, it is preferable to

a. store the top element at the tail of the list

b. store the bottom element at the tail of the list

c. store the bottom element at the first node of the list

d. None of the above
7) Which of the following methods can be used to set the layout manager of a container?
a. setManager
b. setLayoutManager
c. setGUILayout
d. None of the above
8) The number of method calls to recursively calculate the Fibonacci of 3 is:
a. 3
b. 4
c. 2
d. 1
9) Menus are attached to windows by calling:

a. addMenuBar
b. setMenuBar
c. setJMenuBar
d. addJMenuBar
10) The first argument to method showMessageDialog specifies:

a. The title

b. The message

c. The icon

d. The parent window

11) Which of the following methods executes a long computation in a worker thread:

a. doInBackground

b. execute
c. process
d. done
12) Which of the following is not included in an exception’s stack trace?

a. A descriptive message for the exception

b. The name of the exception

c. The method call-stack at the time the exception occurred

d. Instructions on handling the exception
13) Consider the following recursive method:

public int question13(int x, int y) {

if(x==y) return 0 ;

else return question13(x-1, y) + 1 ;}

If the method is called as question13(8,3), what is returned?

a. 5

b. 8
c. 11
d. 3
14) Calling the method question13 above results in an infinite recursion, if which condition below is initially true?

a. x == y
b. x != y
c. x < y
d. None of the above
15) Which of the following conditions best defines the base case for a factorial method?

a. if(x == 1) return 1;
b. if(x == 0) return 1;
c. if(x <= 0) return 1;
d. None of the above
16) Polymorphism allows for specifics to be dealt with during:

a. execution
b. compilation
c. debugging
d. None of the above
Problem 2: True or false (5 minutes) [10 points]

1. A parameter to a method can be polymorphic.
Answer: True False
2. Unchecked exceptions must be caught or propagated, otherwise the program will not compile correctly.
Answer: True False
3. A stack is a LIFO structure.

Answer: True False

4. When a singly linked list is used to implement a queue, a newly enqueued element should be added to the end of the list.
Answer: True False

5. The type of the reference, not the type of the object, is used to determine which version of a method is invoked in a polymorphic reference.
Answer: True False
6. A dialog box allows the user to select one of several options from a “drop down” menu.

Answer: True False
7. The difference between the throw reserved word and the throws reserved word is that throw is used within a method header, while throws is used within a method body.
Answer: True False

8. The following method lacks a base case:
public int foo(int x) {

if(x>0) return foo(x-1)+1;

else return foo(x-2)+2;}

Answer: True False

9. In a drifting array-based implementation of a queue, the elements must all be shifted when either a dequeue or an enqueue operation is performed.

Answer: True False
10. Check boxes operate as a group, providing a set of mutually exclusive options.

Answer: True False
Problem 3: Singly Linked Lists & Queues (25 minutes) [40 points]

1) Implement a class called SNode that is composed of the following two data members:

a. next: points to the SNode following the current node

b. value: the value of the element stored in this node

Make sure that you provide getter and setter methods for each of the data members above.

public class SNode<T> {

private T value;

private SNode<T> next;

public SNode(T v, SNode<T> n) {

value = v;

next = n;}

public T getValue() {

return value;}

public void setElement(T v) {

value = v;}

public SNode<T> getNext() {

return next;}

public void setNext(SNode<T> next) {

this.next = next;}

}
2) Using the SNode class created earlier, implement a singly linked list class called SList with a constructor along with the methods removeFromHead, removeFromTail, insertAtHead, insertAtTail, size, and isEmpty(). The SList should also have the following methods:

a. void insert(SNode<T> p, T item): inserts the item element after the one stored at node p.

b. T remove(SNode<T> p): removes the node p from the list and returns the value of the element that was formerly held in p.

public class SinglyLinkedList<T> {

private SNode<T> head, tail;

private int size;

public SinglyLinkedList() {

head = tail = null;

size = 0;}

public int size() {return size;}

public boolean isEmpty() {return (size == 0);}

public T removeFromHead() throws EmptyListException {

if(isEmpty())

throw new EmptyListException("The list is empty!");

T toReturn = head.getElement();

if(head == tail) {

head = tail = null;

} else {

head = head.getNext();

}

size--;

return toReturn;}

public T removeFromTail() throws EmptyListException {

if(isEmpty())

throw new EmptyListException("List is empty!");

T toReturn = tail.getElement();

if(head == tail) {

head = tail = null;

} else {

SNode<T> temp = head;

while(temp.getNext() != tail)

temp = temp.getNext();

tail = temp;

tail.setNext(null);

}

size--;

return toReturn;}

public void insert(SNode<T> p, T item) {

SNode<T> newNode = new SNode<>(item, null);

if(p != null) {

newNode.setNext(p.getNext());

p.setNext(newNode);

} else if(isEmpty()) {

head = tail = newNode;

} else {

return;

} size++;}

public T remove(SNode<T> p) {

if(isEmpty()) {

return null;

} else if(p != null) {

T toReturn = p.getValue();

SNode<T> temp = head;

while(temp.getNext() != p)

temp = temp.getNext();

temp.setNext(p.getNext());

p.setNext(null); size--;

return toReturn;

} else {

return null;

}
}

}
3) Write a class called SLBasedQueue that represents a queue data structure. Write a constructor and declare the necessary class variables. Use the SList created previously to implement all the methods of the Queue ADT.
public class SListBasedStack<T> implements Stack<T> {

SinglyLinkedList<T> queueList;

public SListBasedStack() {

queueList = new SinglyLinkedList<>();}

public int size() {

return queueList.size();}

public boolean isEmpty() {

return queueList.isEmpty();}

public void enqueue(T e) {

queueList.insertAtTail(e);}

public T dequeue() throws EmptyListException {

return queueList.removeFromHead();

}

public T front() throws EmptyListException {

return stackList.getHead();}

}

Problem 4: Stacks (20 minutes) [20 points]

1) Write a class called DualStack that represents two stacks that we refer to as stack A and stack B. Note that DualStack must be implemented using a single one-dimensional array called DualArray. In other words, DualArray is used to store the elements of both stacks A and B. Moreover, DualArray should be utilized in such a way that a stack overflow happens in either of the two stacks A and B only when DualArray itself becomes full.
In addition to the DualArray instance variable of DualStack, provide two instance variables called topOfStackA and topOfStackB representing the indices in DualArray of the top elements for stack A and stack B respectively.
Your class DualStack should consist of only the following methods:

a. int size(): total number of elements stored in stack A and stack B combined.

b. void pushA(Object item): Push item onto stack A

c. void pushB(Object item): Push item onto stack B

d. Object popA(): Pop the top item from stack A
e. Object popB(): Pop the top item from stack B

f. boolean isEmptyA(): indicating whether or not stack A is empty.

g. boolean isEmptyB(): indicating whether or not stack B is empty.

h. boolean isFull(): indicating whether both stacks A and B cover the entire DualArray array.
Hint: The stacks A and B may grow in different directions inside the DualArray array.
public class DualStack {

private final int DEFAULT_CAPACITY = 10;

public Object DualArray [];

private int topOfStackA; // top of stack pointer for stackA

private int topOfStackB; // top of stack pointer for stackB

// Constructor and class variables initialization

public DualStack(){

DualArray = new Object[DEFAULT_CAPACITY];

topOfStackA = -1;

topOfStackB = DualArray.length;

}

// Sum of the sizes of stack 1 and stack 2.

public int size(){

return
((topOfStackA + 1 + DualArray.length - topOfStackB));

}

// When both the stacks together cover up the entire array

public boolean isFull(){

return (size()==DualArray.length);

}

// When the stacks are empty

public boolean isEmptyA() {

return ((topOfStackA == -1));

}

// When the stacks are empty

public boolean isEmptyB() {

return ((topOfStackB == DualArray.length));

}

// Push the item onto stackA

public void pushA(Object item){

if (!isFull())

DualArray[++topOfStackA]=item;

else {

System.out.println("Stack is full!");

}

}

// Push the item onto stackB

public void pushB(Object item){

if (!isFull())

DualArray[--topOfStackB]=item;

else

System.out.println("Stack is full!");

}

// Pop the top item from stackA

public Object popA() {

if (!isEmptyA())

return (DualArray[topOfStackA--]);

else return null;

}

// Pop the top item from stackB

public Object popB() {

if (!isEmptyB())

return (DualArray[topOfStackB++]);

else return null;

}

}
Problem 5: Singly Linked List (15 minutes) [14 points]
You are given below the header for a method called FindMid that returns the element stored in the node present in the middle of a singly linked list L that is received as a parameter. Your job is to complete the implementation of FindMid. Assume that you are given the SNode and SinglyLinkedList structures and their associated methods. Assume also that the total number of nodes in L is odd.
public T FindMid(SinglyLinkedList<T> L) {

try {

int end = L.size(); int start = 0;

int mid = (start + end) / 2;

for(int i=0; i<mid; i++)

L.removeFromHead();

return L.removeFromHead();

} catch(EmptyListException e) {

System.out.println(e.getMessage());

}

return null;
}
