
 1

COE 312 – Data Structures

Welcome to Exam II
Wednesday January 08, 2014

Instructor: Dr. Wissam F. Fawaz

Name: _______________________

Student ID: ________________

Instructions:

1. This exam is Closed Book. Please do not forget to write your
name and ID on the first page.

2. You have exactly 90 minutes to complete the 6 required
problems.

3. Read each problem carefully. If something appears
ambiguous, please write your assumptions.

4. Points allocated to each problem are shown in square
brackets.

5. Put your answers in the space provided only. No other spaces
will be graded or even looked at.

Good Luck!!

 2

Problem 1: Multiple Choice Questions (20 minutes) [16 points]
1) Which of the following event descriptions best describes the mouse entered event?

a. The mouse button is pressed down
b. The mouse button is pressed down and released without moving the mouse in between
c. The mouse pointer is moved onto a component
d. None of the above

2) Which of the following best describes a timer?
a. It starts when a GUI component is first created, and ends when component is destroyed
b. It generates action events at regular intervals
c. It determines the amount of time it takes to execute a method
d. All of the above

3) Which of the following is a proper recursive definition of x raised to the yth power?
a. xy = xy-1 * x for all y
b. xy = xy-1 * x for y > 1; xy = x for y = 1
c. xy = xy-2 * x2 for y > 2; xy = x for y = 1 and xy = 1 for y = 0
d. None of the above

4) Which of the following statements makes the text of JTextField uneditable?
a. textField.setEditable(false);
b. textField.setUneditable(true);
c. All of the above
d. None of the above

5) Which method determines if a JCheckBox is selected?
a. getSelected
b. selected
c. isChosen
d. None of the above

6) The logical relationship between radio buttons is maintained by objects of which
of the following classes?

a. MutualExclusionGroup
b. RadioButtonGroup
c. Group
d. None of the above

7) Which of the following statements about anonymous inner classes is false?
a. They are declared without a name
b. They typically appear inside a method declaration
c. They can access their top-level class’s methods
d. None of the above

8) If the characters ‘D’, ‘B’, ‘C’, ‘A’ are placed in a queue (in that order), and then
removed one at a time from the queue, in what order will they be removed?

a. ACBD
b. DBCA
c. DCAB
d. None of the above

9) Consider the following method declaration
void exam(int i) {
 if(i>1) {
 exam(i/2);
 exam(i/2);}
 System.out.print(“*”);}

 3

How many asterisks are printed by the method call exam(5)?
a. 3
b. 4
c. 7 (Correct answer)
d. None of the above

10) Which of the following SwingWorker methods executes a long computation in
a worker thread?

a. execute
b. done
c. doInBackground
d. none of the above

11) Which of the following is used to perform all the tasks that manipulate GUI
components, because they are not thread safe

a. Event-handling thread
b. Event-dispatch thread
c. GUI-handling thread
d. Component-dispatch thread

12) The number of calls to recursively calculate the Fibonacci value of 7 is
a. 7
b. 13
c. 41
d. 29

13) The first argument to the method showMessageDialog of JOptionPane
specifies

a. The title
b. The message
c. The icon
d. The parent window

14) Which of the following statements about a JLabel is false?
a. Applications can change a label’s content after creating it
b. A JLabel can display an image
c. A JLabel can display text of any length
d. None of the above

15) A JEditorPane can be used to render
a. Multi-line plain text
b. HTML-formatted data
c. An image
d. All of the above

16) Which JFileChooser method returns the file the user selected?
a. getFile
b. getOpenDialog
c. showOpenDialog
d. None of the above

 4

Problem 2: True or false (10 minutes) [14 points]

1. Consider the case where a method called f1 calls a different method called f2,
which then calls the original method f1. In this case, f1 is a recursive method.

Answer: True False
2. Every line in a catch block is guaranteed to be executed when an exception is

thrown.
Answer: True False
3. If a class implements an interface, then it cannot extend another class.
Answer: True False
4. The peek operation of the java.util.Stack class returns a reference to the

top element.
Answer: True False
5. By default, JRadioButtons operate as a group, providing a set of mutually

exclusive options.
Answer: True False
6. Consider following method.

public void foo(int x) {
 if(x>0) foo(x-2);
 System.out.println(x + “ ”);}
The method call foo(4) prints: 2 4

Answer: True False
7. JOptionPane’s showMessageDialog method creates a modal input dialog

box.
Answer: True False
8. A Polygon object in Java can be defined by arrays of x and y coordinates.
Answer: True False
9. Similarly to all Java programs, swing Java applications must have a main

method.
Answer: True False
10. The following method correctly multiplies two integer values so long as both are

non-negative:
public int multiply(int a, int b) {

return (b > 0) ? a + multiply(a, b-1) : 0;
}

Answer: True False
11. Some problems such as the Towers of Hanoi puzzle are easier to solve iteratively

than recursively.
Answer: True False
12. It is possible for a recursive method having a base case to yield infinite recursion.
Answer: True False
13. The pop and front methods can be used to remove elements from stacks and

queues respectively.
Answer: True False
14. An ArrayList can be used to implement a stack data structure.
Answer: True False

 5

Problem 3: Recursion (10 minutes) [10 points]
1) A binomial coefficient is the coefficient of the xk term in the polynomial

expansion of the binomial power (1+x)n. The binomial coefficient can be

defined recursively as follows:

1
1

1
, 	 , 0

1, 	 0	 	 0
0, 	 0	 	 0

Write a method computeBinomialCoeff(int n, int k) that computes

 with a recursive approach.
public int computeBinomialCoeff(int n, int k) {

 if(n == 0)
 return 0;
 if(k == 0)
 return 1;
 return
computeBinomialCoeff(n-1,k-1)+computeBinomialCoeff(n-1, k);
 }

2) What does the following method do?

public int mysteryMethod(int a, int b) {
 if(b == 1)
 return a;
 else
 return a * mysteryMethod(a, b-1);
}

Answer: It returns ab

 6

Problem 4: Stacks and queues (10 minutes) [10 points]
1) Write a method to move all the nodes from a stack s to a queue q. You can use

any of the methods defined in the Stack and Queue ADT.
public void moveStackToQueue(Stack s, Queue q) {
 while(!q.isEmpty())
 s.push(q.dequeue());

}

2) Write a method that returns the number of elements stored in a stack. In this
question, we assume that there is no size function defined in the Stack ADT. In
other words, you are allowed to use all the methods of the Stack ADT but the
size method in your solution.
public int stackSize(Stack s) {
 int size = 0 ;
 while(!q.isEmpty()) {
 q.dequeue() ;
 size++ ;
 }
 return size ;

}

 7

Problem 5: Timer class (20 minutes) [20 points]
Design and implement an application that works as a stopwatch. Include a label that
shows the time (in seconds) as it increments. Include buttons that allow the user to start
and stop the time and reset the label to zero. Hint: use the Timer class to control the
timing of the stopwatch.
import javax.swing.JFrame;
public class StopWatchFrame {
 public static void main(String[] args){
 JFrame frame = new JFrame ("Stop Watch");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.getContentPane().add (new StopWatchPanel());
 frame.pack();
 frame.setVisible (true);
 }
} // end of StopWatchFrame class

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
public class StopWatchPanel extends JPanel {
 // Declare instance variables here

private JLabel timeDisplay;
private Timer timer;
private int time;

// Complete implementation of constructor

 public StopWatchPanel() {
 time = 0;
 timeDisplay = new JLabel(“0”);
 add(timeDisplay,BorderLayout.NORTH);
 JPanel buttonPanel = new JPanel();

 JButton button;

ButtonActionListener buttonPressed = new
ButtonActionListener();
button = new JButton(“Start”);
button.addActionListener(buttonPressed);
buttonPanel.add(button);
button = new JButton(“Stop”);
button.addActionListener(buttonPressed);
buttonPanel.add(button);
button = new JButton(“Reset”);
button.addActionListener(buttonPressed);
buttonPanel.add(button);
add(buttonPanel, BorderLayout.CENTER);

 timer = new Timer(1000, new TimerActionListener());

} // end of StopWatchPanel constructor method

 8

 // Start the stop watch.
 private void startTime() {
 timer.start();
 }
 // Stop the stop watch.
 private void stopTime() {
 timer.stop();
 }
 // Reset the stop watch.
 private void resetTime() {
 timer.stop();

 timeDisplay.setText(“0”);
 time = 0;
 }

// Increment the display by 1 second.
 private void incrementDisplay() {
 time++;
 timeDisplay.setText(new Integer(time).toString());
 }

// Represents the action listener for the timer
private class TimerActionListener

implements ActionListener {

public void actionPerformed(ActionEvent actionEvent){
 incrementDisplay();

}
} // end of private class TimerActionListener
// Represents the action listener for the buttons
private class ButtonActionListener

implements ActionListener {
// determine which button was pressed and execute
// appropriate command
public void actionPerformed(ActionEvent evt) {

 JButton source = (JButton)evt.getSource();
 String text = source.getText();
 if (text.equals(“Start”))
 startTime();
 else
 if (text.equals(“Stop”))
 stopTime();
 else

 if (text.equals(“Reset”))
 resetTime();

 }
 } // end of private class ButtonActionListener
} // end of class StopWatchPanel

 9

Problem 6: Stack (20 minutes) [30 points]
Write a class called ArrayBasedStack that realizes a stack data structure by means of
an array. Equip this class with a constructor, declare the instance variables, and
implement all the methods of the Stack ADT. You are required in the process to define
the necessary interface and create an exception class representing the errors that might
arise when processing the elements of this stack data structure.

 public interface Stack {
 public int size();
 public boolean isEmpty();
 public void push(Object elemnt) throws StackException;
 public Object pop() throws StackException;
 public Object top() throws StackException;
}

public class StackException extends Exception {
 public StackException(String msg) {
 super(msg);
 }
}

import java.util.Arrays;
public class ArrayBasedStack implements Stack{
 private Object[] arr;
 private int top;
 public ArrayBasedStack(int capacity) {
 arr = new Object[capacity];
 top = -1;
 Arrays.fill(arr, null);
 }
 public int size() {
 return top+1;
 }
 public boolean isEmpty() {
 return top==-1;
 }

public void push(Object element) throws
StackException {

 if(size() == arr.length)
 throw new StackException("Stack is full");
 ++top;
 arr[top] = element;
 }

 10

 public Object pop() throws StackException {
 if(isEmpty())
 throw new StackException("Stack is Empty");
 Object toReturn = arr[top];
 arr[top] = null;
 top--;
 return toReturn;
 }
 public Object top() throws StackException {
 if(isEmpty())
 throw new StackException("Stack is Empty");
 return arr[top];
 }
}

 11

Appendix: Classes and Methods

1. Methods related to Stack and Queue ADTs:

Stack

int size()
boolean isEmpty()
void push(Object) throws StackException
Object pop() throws StackException
Object top() throws StackException

Queue

int size()
boolean isEmpty()
void enqueue(Object) throws QueueException
Object dequeue() throws QueueException
Object front() throws QueueException

2. Classes related to GUI-based applications:

JButton

JButton(String)
void setEnabled(boolean)
void setMnemonic(char)
void addActionListener(ActionListener)

JLabel

JLabel()
JLabel(String)
String getText()
void setText(String)

Timer

Timer(int delay, ActionListener)
void start()
void stop()
void restart()
boolean isRunning()

ActionEvent

String
getActionCommand()
Object getSource()
int getModifiers()
long getWhen()

