CIE302 Structural Analysis I (Fall 2009)

FINAL EXAM

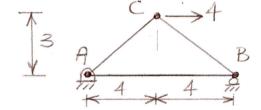
Closed Book, 120 Minutes, 1-Feb-2010

First Name:		

Family Name:

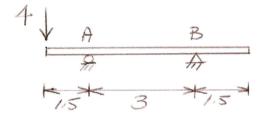
ID Number:

Instructions

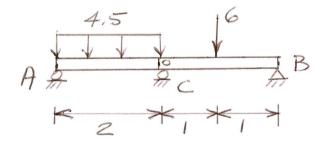

✓ If the method of solution is not specified, you choose the method.

- ✓ If the virtual structure is not specified, you choose the structure.
- ✓ Ignore shear deformations, unless explicitly stated in the problem.

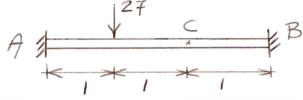
Problem	1	2	3	4	5	Total
Points						
Max. Points	20	15	15	20	30	100


Problem 1 (20 Points)

The truss consists of three members and is supported by a hinge at A and a roller at B. Determine the <u>vertical</u> deflection at C. Use EA = 1.


Problem 2 (15 Points)

The beam is supported by a roller at A and a hinge at B. Determine the rotation at B. Use EI = 1.

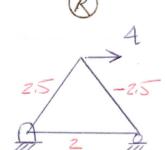


Problem 3 (15 Points)

Two members: AC and BC are connected by a pin at C. Supports are: roller at A, roller at C and hinge at B. Determine the <u>change in rotation at C</u>. Use EI = 1.

For the fixed-fixed beam AB shown in the figure below, determine the <u>vertical reaction at A</u> and the <u>vertical deflection at C</u>. Use EI = 1.

Problem 4 (20 Points)

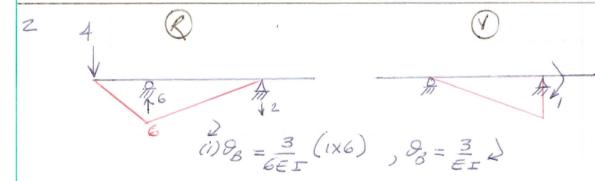

Use only the Stiffness Method, do not use statics or any other method. The structural model should be as follows:

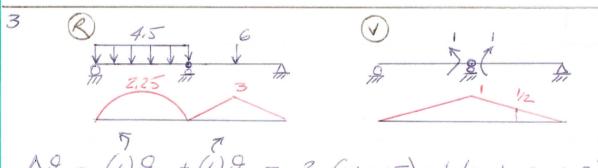
Joints: Joint 1 is A Joint 2 is C Joint 3 is B

Elements: Element 1 is AC Element 2 is CB

Problem 5 (30 Points)

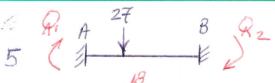
Use Flexibility (if needed), Virtual Work, and Statics. Do not use any other method.

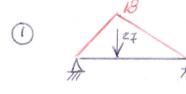



+ TENSION

(i)
$$\Delta_{c} = \left(-\frac{25}{3}\right)(2.5)(5) + \left(-\frac{25}{3}\right)(-25)(5) + \left(\frac{2}{3}\right)(2)(8)$$

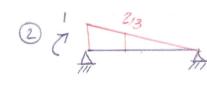
$$\Delta_{c} = \frac{32}{3}\sqrt{2.5}$$

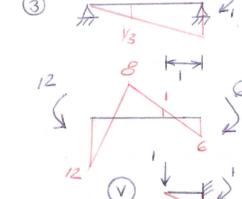



$$\Delta \theta_{c} = (1)\theta_{c} + (1)\theta_{t} = \frac{2}{3}(1 \times 2.25) + \frac{1}{6}(2 \times \frac{1}{2} \times 3 + 1 \times 3)$$

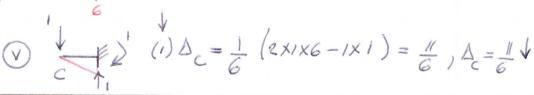
$$\Delta \theta_{c} = 357$$

$$\Delta \theta_{c} = 357$$


banese American University



$$\frac{R|V|}{1|Z|} \int_{QL1} = \frac{1}{6} \left(2x \frac{2}{3} \times 18 + 1 \times 18 \right) + \frac{2}{6} \left(2x \frac{2}{3} \times 18 \right) = 15$$


$$\frac{R|V|}{1|3|} \int_{QL2} = \frac{1}{6} \left(-2x \frac{1}{3} \times 18 \right) + \frac{2}{6} \left(-2x \frac{1}{3} \times 18 - 1 \times 18 \right) = -12$$

$$\begin{vmatrix}
 Q_1 \\
 Q_2
 \end{vmatrix} = -\frac{2}{3} \begin{vmatrix}
 Z & 1 \\
 1 & 2
 \end{vmatrix} = -\frac{12}{6}$$

$$V_3$$
 A_{μ}
 V_3
 A_{μ}
 V_3
 A_{μ}
 $A_$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 13.5 & 4.5 \\ 4.5 & 6 \end{bmatrix} \begin{bmatrix} d3 \\ d4 \end{bmatrix} + \underbrace{ZF}_{-1/2} \begin{bmatrix} 1 \\ -1/2 \end{bmatrix} = \underbrace{1}_{-1/2} \begin{bmatrix} 6 & -4.5 \\ -4.5 & 13.5 \end{bmatrix} \underbrace{ZF}_{-1/2} \begin{bmatrix} 1 \\ 1/2 \end{bmatrix} = \underbrace{1}_{-1/2} \begin{bmatrix} -11 \\ 1/5 \end{bmatrix} \underbrace{A_{c} = \underbrace{H}_{-1/2}}_{-1/2}$$

$$R_{1} = \underbrace{K_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \qquad R_{1} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \qquad R_{1} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \qquad R_{1} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + F_{0}}_{-1/2} = 20 \land$$

$$\underbrace{K_{1} = X_{18} \, d_{3} + K_{14} \, d_{4} + K_{14} \, d_{4$$