Topology Final Exam

Instructor: W. D. Gillam Date: January 15, 2014

Instructions: Print your *name* and *Topology Final Exam* in the upper right corner of the first page. Also be sure to put your name in the upper right corner of *every* page you intend to turn in. The value of each problem is indicated in **bold**.

Throughout the exam, I := [0, 1] denotes the closed unit interval with the usual topology and $\omega := \{1, 2, ...\}$ (with the discrete topology).

The first problem is like the first problem on Midterm 1 (the "forgotten midterm"). We will consider the following "constructions" with spaces:

- (1) subspace
- (2) closed subspace
- (3) *finite* product
- (4) *finite* coproduct

and the following "properties" of topological spaces:

- (1) compact
- (2) Hausdorff
- (3) second countable (has a countable basis)
- (4) metrizable
- (5) locally compact
- (6) path connected
- (7) simply connected
- (1) (5) Construct a 4×7 matrix by setting the (i, j) entry of the matrix equal to 1 if every *i* of a space (or "spaces," as appropriate) with property *j* also has property *j*—otherwise set the (i, j) entry to zero. For example, the (3, 2) entry of this matrix is 1 if every *finite product* of *Hausdorff* spaces is *Hausdorff*—otherwise the (3, 2) entry is zero. No explanation or proofs are necessary—the matrix is your entire answer. Solution:

I didn't count the question about a finite coproduct of simply connected spaces, because I decided I was not clear about the convention that a simply

connected space is required to be path connected (this is the standard convention). At most one wrong was a 5, two or three wrong was a 4, and so forth.

(2) (4) Give $I^{\omega} := \{x = (x_1, x_2, ...) : x_1, x_2, \dots \in I\}$ the product topology. Give

$$X := \{ x \in I^{\omega} : x_n = 0 \text{ for all sufficiently large } n \}$$

the subspace topology. Is X compact? Justify your answer.

Solution: Since I^{ω} is compact Hausdorff, X is compact iff it is closed in I^{ω} (a closed subspace of a compact space is compact, and a compact space is closed in any Hausdorff space containing it). If you made this observation you got at least 2 points. To show that X is not compact, we will show that it isn't closed in I^{ω} . In fact it is far from being closed... it is even dense in I^{ω} (though it is clearly not equal to I^{ω}). Indeed, a non-empty basic open subset of I^{ω} takes the form

$$U = U_1 \times \cdots \times U_n \times I \times I \times \cdots$$

where U_1, \ldots, U_n are non-empty open subsets of I. Take any points

$$x_1 \in U_1, \ldots, x_n \in U_n.$$

Then $x := (x_1, ..., x_n, 0, 0, ...)$ is in $U \cap X$.

(3) (3) Is there a linear order < on \mathbb{R}^2 such the topology on \mathbb{R}^2 induced by < coincides with the usual topology? Justify your answer. Solution: No. Say < is a linear order on \mathbb{R}^2 . Take any three points $x, y, z \in$

Solution. No. Say < is a linear order of \mathbb{R} . Take any three points $x, y, z \in \mathbb{R}^2$. After renaming them, we can assume x < y < z. Then

$$\mathbb{R}^2 \setminus \{y\} = \{p \in \mathbb{R}^2 : p < y\} \prod \{q \in \mathbb{R}^2 : y < q\}$$

shows that $\mathbb{R}^2 \setminus \{y\}$ is disconnected in the order topology, which is not true in the usual topology.

(4) (3) Fill in the blanks:

 π

$$\pi_1(S^1 \times S^1) \cong \pi_1(S^2) \cong \pi_1(\mathbb{R}^2) \cong \pi_1(\mathbb{R}^2) \cong \pi_1(S^2/\{\pm 1\}) \cong \pi_1(S^2/\{\pm 1\}) \cong \pi_1(S^2/\{\pm 1\}) \cong \pi_1(S^2/\{\pm 1\}) \oplus \pi_1(S^2/\{\pm 1\}) \oplus$$

Solution: The blanks are \mathbb{Z}^2 , $\{1\}$, $\{1\}$, $\{\pm 1\}$, as you learned on the previous midterm.

(5) (4) Prove the following statements about covering spaces:

(a) If $f: \tilde{X} \to X$ and $g: \tilde{Y} \to Y$ are covering spaces, then

$$f \times g : X \times Y \to X \times Y$$

is a covering space.

(b) If $f: X \to Y$ and $g: Y \to Z$ are covering spaces, then $gf: X \to Z$ is a covering space.

Error: I made an error here: It is necessary to assume that g is finite-to-one in (b). Obviously I did not grade you on (b); I just made this a two-point problem. I think everyone got the two points.

Here is an example that shows you need to assume g is finite-to-one: Take $Z = S^1$, take $Y = \coprod_{n=1}^{\infty} S^1$, g the trivial covering space map, $X = \coprod_{n=1}^{\infty} S^1$,

and f the coproduct of the n^{th} power maps $f_n : S^1 \to S^1$. The trouble is that there is no single neighborhood U of, say, $1 \in S^1 \subseteq \mathbb{C}^*$ which is good for all of the f_n .

Solution: For (a), consider a point $(x, y) \in X \times Y$. Pick a neighborhood U (resp. V) of x (resp. y) in X (resp. Y) good for f (resp. g). Then $f^{-1}(U) = \prod_i U_i$ is a disjoint union of opens U_i , each mapping homeomorphically to U via (the restriction of) f, and $g^{-1}(V) = \prod_j V_j$ is a similar disjoint union. Then

$$(f \times g)^{-1}(V \times U) = f^{-1}(V) \times g^{-1}(U)$$
$$= \prod_{i,j} U_i \times V_j$$

and each $U_i \times V_j$ maps homeomorphically to $U \times V$ via (the restriction of) $f \times g$, hence $U \times V$ is good for $f \times g$.

For (b), pick any $z \in Z$. Pick a neighborhood U of z in Z good for g, so $g^{-1}(U) = \prod_{i=1}^{n} U_i$, with each map $g|U_i : U_i \to U$ a homeomorphism (there can only be finitely many U_i by the assumption that g is finite-toone). Let y_i be the unique element of $g^{-1}(z) \cap U_i$. Pick a good neighborhood V_i of y_i for f, so that $f^{-1}(V_i) = \prod_{j \in I_j} V_{i,j}$, with each map $f|V_{i,j} \to V_i$ a homeomorphism. Replacing V_i with $V_i \cap g^{-1}(U)$ if necessary, we can assume $V_i \subseteq g^{-1}(U)$. We noted on some homework that a covering map is open, so $W := g(V_1) \cap \cdots \cap g(V_n)$ is a neighborhood of z, which is easily seen to be good.

Do only two of these last three problems:

- (6) (5) Let $X = (X, \tau)$ be a topological space. Let τ_k be the family of subsets U of X such that $U \cap K$ is open in K for every *compact* subspace $K \subseteq X$. Clearly $\tau \subseteq \tau_k$.
 - (a) Prove that τ_k is a topology (the compactly generated topology, or k-topology, from the German kompakt).
 - (b) Prove that $\tau = \tau_k$ when X is first countable. *Hint:* For such an X there is a useful criterion for determining when a subset $Z \subseteq X$ is closed.

(It is not so easy to give an example where $\tau \neq \tau_k$! Be thankful that there is no part (c)!)

Solution: (a) is straight-forward. No one had trouble there. For (b), it will suffice to show that any subset $Z \subseteq X$ which is closed in the topology τ_q is closed in the topology τ . Since (X, τ) is first countable, it suffices to show that $x \in Z$ whenever there is a sequence $z_1, z_2, \dots \in Z$ converging to x in X. Notice that $K := \{x, z_1, z_2, \dots\}$ is compact because the assumed convergence means any neighborhood of x contains all but finitely many z_i , so the assumption that Z is closed in the τ_q topology implies that $Z \cap K$ is closed in K. But $Z \cap K$ certainly contains $\{z_1, z_2, \dots\}$ and $x \in K$ is certainly in the closure of $\{z_1, z_2, \dots\}$, so we must have $x \in Z \cap K$, hence $x \in Z$ as desired.

(7) (5) Let $f_1: X_1 \to Y, f_2: X_2 \to Y$ be continuous map of topological spaces with the same codomain. Let

$$X_1 \times_Y X_2 := \{ (x_1, x_2) \in X_1 \times X_2 : f_1(x_1) = f_2(x_2) \}.$$

Give $X_1 \times_Y X_2$ the subspace topology from the inclusion $X_1 \times_Y X_2 \subseteq X_1 \times X_2$ $(X_1 \times X_2 \text{ is given the product topology})$. This ensures that the projections $\pi_i : X_1 \times_Y X_2 \to X_i$ (i = 1, 2) are continuous. Prove that

$$\pi_1: X_1 \times_Y X_2 \to X_1$$

is open when f_2 is open. ("Open maps are stable under base change.") **Solution:** It suffices to prove that the image of each basic open (in any basis for $X_1 \times_Y X_2$) under π_1 is open, so it will be enough to prove that $\pi_1(U_1 \times_Y U_2)$ is open in X_1 whenever U_1 is an open subset of X_1 and U_2 is an open subset of X_2 . (Note that

$$U_1 \times_Y U_2 = (U_1 \times U_2) \cap (X_1 \times_Y X_2)$$

so such sets $U_1 \times_Y U_2$ form a basis for $X_1 \times_Y X_2$ by definition of the product and subspace topologies.) For this, a little "set theory exercise" yields the formula

$$\pi_1(U_1 \times_Y U_2) = U_1 \cap f_1^{-1}(f_2(U_2)),$$

which is open when f_2 is open, since f_1 is continuous.

(8) (5) The "sea urchin" (denizkestanesi) is the space Y obtained by "gluing together infinitely many copies of I at the origin." To be more precise, let X := I × ω and let ~ be the equivalence relation on X where (x, m) ~ (y, n) iff (x, m) = (y, n) or x = y = 0. Let [x, m] denote the equivalence class of (x, m). Let q : X → X/~=: Y, q(x, n) := [x, n] be the quotient, with the quotient topology τ_q on Y. Let y₀ := [0, 0] be the "special" point of Y.

We can alternatively topologize the set Y as follows: Declare a basic open neighborhood of y_0 to be a set of the form

$$U_{\epsilon} = \{ [x, n] : x < \epsilon \},\$$

for $\epsilon > 0$. For $x \in (0, 1]$ and $m \in \omega$, a basic open neighborhood of [x, m] is a set of the form $\{[y, m] : y \in U\}$, for U a neighborhood of x in (0, 1]. These basic opens form a basis for a topology τ . (You don't need to prove this.) (a) Prove that $\tau \subseteq \tau_a$.

(b) Prove that (Y, τ) is metrizble, but (Y, τ_q) is not even first countable.

Solution: To see that $\tau \subseteq \tau_q$, we just need to check that each of the basic opens V in the τ -topology is open in the quotient topology τ_q —i.e. that $q^{-1}(V)$ is open in $I \times \omega$. Indeed, for the basic open U_{ϵ} , we have

$$q^{-1}(U_{\epsilon}) = [0,\epsilon) \times \omega$$

and for the other kind of basic open $V(U,m) = \{[y,m] : y \in U\}$, we have

$$q^{-1}(V(U,m)) = (I \times \{m\}) \cap (U \times \omega).$$

To see that (X, τ) is metrizable, you can use Urysohn's Metrization Theorem: To see that (Y, τ) is second countable, use the basic opens $U_{1/n}$ and V(U, n) as U runs over a countable basis for (0, 1] and n runs over the countable set ω . To see that (Y, τ) is regular, consider a closed subset $A \subseteq Y$ and a point $y = [x, n] \in Y \setminus A$. We need to show that y and A are contained in disjoint opens S, T. This follows easily from the fact that (0, 1] is regular if x > 0. If $y = y_0$, then since A is closed some U_{ϵ} is disjoint from A and $S := U_{\epsilon/2}, T := \bigcup_{n \in \omega} V((\epsilon/2, 1], n)$ will do.

To see that (X, τ_q) isn't first countable at y_0 , suppose U_1, U_2, \ldots are open neighborhoods of y_0 . For each $n \in \omega$, $(0, n) \in q^{-1}(y_0)$ and $q^{-1}(U_n)$ is an open subset of $I \times \omega$ containing $q^{-1}(y_0)$, so there will be some $\epsilon_n > 0$ so that $[0, \epsilon_n) \times \{n\} \subseteq q^{-1}(U_n)$. Let $V := \bigcup_{n \in \omega} [0, \epsilon_n/2) \times \{n\}$. Then V is an open subset of $I \times \omega$ which is \sim -saturated $(q^{-1}(q(V)) = V)$ because

$$(0,1), (0,2), \dots \in V,$$

so q(V) is an open neighborhood of y_0 in (Y, τ_q) . There is no *n* for which $U_n \subseteq q(V)$ because there is no *n* for which $q^{-1}(U_n)$ is contained in $q^{-1}(q(V)) = V$.