Byblos

Discrete Structure II

Date: 30/01/2006
Final Exam

1. (a) Use propositional resolution to prove the following:

$$
\{A \vee B \vee \neg D, \neg A \vee C \vee \neg D, \neg B, D\} \vdash C
$$

(b) Find natural deduction proof of the following:

$$
[(A \longrightarrow B) \vee(A \longrightarrow C)] \longrightarrow[A \longrightarrow(B \vee C)]
$$

2. We consider a digraph $G=(V, E)$ such that $V=\{1,2,3\}$ and the adjacency matrix of G is:

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

(a) Sketch the digraph G.
(b) Define the digraph of 2-stage paths G_{2}, and calculate its adjacency matrix.
(c) Sketch, using (b), the digraph G_{2}.
3. Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a finite automaton such that:

- The states set is $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$
- The input alphabet is $\Sigma=\{0,1\}$
- The transition function δ is given by the following table:

δ	0	1
q_{0}	q_{0}	q_{1}
q_{1}	q_{2}	q_{1}
q_{2}	q_{0}	q_{3}
q_{3}	q_{3}	q_{3}

- The initial state is q_{0}
- The final states set is $F=\left\{q_{3}\right\}$
(a) Sketch the state transition diagram of the finite automaton M.
(b) Determine if the two strings 010100 and 00011 are accepted or rejected by M.
(c) Find, using Kleene's algorithm, a representation of the language $L(M)$ by a regular expression.
(d) Explicitly define what the strings of $L(M)$ would be.

4. We consider the following register machine program P :

$\hat{1}$	$(1,2,5) \quad R=2, \quad M=5$	
$\hat{2}$	$(2,3)$	
$\hat{3}$	$(2,4)$	
$\hat{4}$	$(2,1)$	
$\hat{5}$	Halt	

(a) Find the code e of the program P.
(b) Calculate $\{e\}_{2}(0,2),\{e\}_{2}(1,1),\{e\}_{2}(2,1)$ and $\{e\}_{2}(3,2)$.
(c) Calculate $\{e\}_{2}(m, n)$ where m and n are in \mathbb{N}.
(d) Deduce the function computed by the program P.
5. Bonus question. Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a finite automaton such that $Q=\left\{q_{0}, q_{1}\right\}, \Sigma=\{0,1\}$ and $F=\left\{q_{1}\right\}$. We consider the language L over the alphabet Σ defined by
$L=\left\{w \in \Sigma^{*}: w\right.$ is a string containing an odd number of 1 's $\}$.
(a) We assume that $L(M)=L$. Find the transition function δ (you can give δ by a table or by a diagram).
(b) Deduce a representation of L by a regular expression.
MARKS : 1. [20]
2. [20] 3. [30]
4. [30]
5. [10]

