Lebanese American University

Byblos

Discrete Structure II	Date: 21/12/2005
Test $#2$	Duration: 1h 30

- 1. Use propositional resolution to prove the following:
 - (a) $\{A \to B \lor C\} \vdash (A \to B) \lor (A \to C)$
 - (b) $\{A \to B, B \to A, A \lor B\} \vdash A \land B$
- 2. Find natural deduction proof of the following formula:

$$\exists x \, (\varphi(x) \land \psi(x)) \to (\exists x \, \varphi(x) \land \exists x \, \psi(x))$$

Prove, by a counter-example, that the reverse of this formula is not universally valid.

- 3. Find a resolution proof of SSSS0 SS0 = SS0, assuming the appropriate recursion equations for the difference predicate diff (x, y, z).
- 4. (a) Give the definition of a tree and a bipartite graph.
 - (b) Prove that a graph can be coloured by two colours iff it is a bipartite graph.
 - (c) Prove that a tree is a bipartite graph and outline an algorithm which explains how we can find the representation of a tree as a bipartite graph.
 - (d) Give an example of a bipartite graph which is not a tree.
 - (e) We say that a graph G is a *forest* if it is without circuits.
 - i. Verify that a tree is a forest. Give an example of a forest which is not a tree.
 - ii. Prove that a forest is a bipartite graph and outline an algorithm which explains how we can find the representation of a forest as a bipartite graph.
 - iii. Give an example of a bipartite graph which is not a forest.

5. Bonus question.

We consider the following predicate logic formula:

 $\forall x \, \exists y \, \varphi(x, y) \longrightarrow \forall y \, \exists x \, \varphi(x, y)$

This formula is universally valid? Give a deduction proof or a counter-example.

MARKS : 1. [20] 2. [15] 3. [15] 4. [50] 5. [10]