Byblos

Discrete Structure II
 Date: 21/12/2005
 Test \#2
 Duration: 1h 30

1. Use propositional resolution to prove the following:
(a) $\{A \rightarrow B \vee C\} \vdash(A \rightarrow B) \vee(A \rightarrow C)$
(b) $\{A \rightarrow B, B \rightarrow A, A \vee B\} \vdash A \wedge B$
2. Find natural deduction proof of the following formula:

$$
\exists x(\varphi(x) \wedge \psi(x)) \rightarrow(\exists x \varphi(x) \wedge \exists x \psi(x))
$$

Prove, by a counter-example, that the reverse of this formula is not universally valid.
3. Find a resolution proof of $S S S S 0-S S 0=S S 0$, assuming the appropriate recursion equations for the difference predicate diff (x, y, z).
4. (a) Give the definition of a tree and a bipartite graph.
(b) Prove that a graph can be coloured by two colours iff it is a bipartite graph.
(c) Prove that a tree is a bipartite graph and outline an algorithm which explains how we can find the representation of a tree as a bipartite graph.
(d) Give an example of a bipartite graph which is not a tree.
(e) We say that a graph G is a forest if it is without circuits.
i. Verify that a tree is a forest. Give an example of a forest which is not a tree.
ii. Prove that a forest is a bipartite graph and outline an algorithm which explains how we can find the representation of a forest as a bipartite graph.
iii. Give an example of a bipartite graph which is not a forest.
5. Bonus question.

We consider the following predicate logic formula:

$$
\forall x \exists y \varphi(x, y) \longrightarrow \forall y \exists x \varphi(x, y)
$$

This formula is universally valid? Give a deduction proof or a counter-example.
MARKS : 1. [20]
2. [15]
3. [15]
4. [50]
5. [10]

