

Name:

MEE 304 HEAT TRANSFER Midterm I, Duration 1.5 hrs April. 27, 2006

ID:

1) (25 pts) A long homogenous resistance wire of radius $r_o=5$ mm is being used to heat the air in a room by the passage of electric current. Heat is generated in the wire uniformly at a rate of $\dot{q} = 5 \times 10^7 W/m^3$ as a result of resistance heating. If the temperature of the outer surface of the wire remains at 180°C, determine the temperature of at r=2 mm after steady state operation conditions are reached. Take the thermal conductivity of the wire to be $k(T)=k_o(1+\beta T)$ where $k_o=8$ W/m°C and $\beta=8.7 \times 10^{-4} \text{ K}^{-1}$.

2) (20 pts) A 20-m long, 10-cm-diameter hot pipe of district heating system is buried in the soil as shown below. The outer surface temperature of the pipe is 80° C. Taking the surface temperature of the earth to be 10° C and the thermal conductivity of the soil at that location to be 0.9 W/m.°C, determine the rate of heat loss from the pipe.

3) (30 pts.) Steam in a heating system flows through tubes whose outer diameter is D_1 = 3 cm and whose walls are maintained at a temperature of 120°C. Circular aluminum fins (k= 180 W/m.°C) of outer diameter D_2 =6 cm and constant thickness t=2mm are attached to the tube, as shown below. The space between the fins is 3 mm, and thus there are 200 fins per meter length of the tube. Heat is transferred to the surrounding air at T_c=25°C, with a combined heat transfer coefficient of h=60 W/m²⁰C.

- a) Determine the increase in heat transfer from the tube per meter if its length as a result of adding fins.(25 pts)
- b) The overall effectiveness of the finned tube (5pts)

4) (25 pts.) Radioactive wastes are packed in a thin-walled spherical container. The wastes generate thermal energy non-uniformly according to the relation $\dot{q} = \dot{q}_o \left[1 - (r/r_o)^2\right]$, where \dot{q} is the local rate of energy generation per unit volume, \dot{q}_o is the constant, and r_o is the radius of the container. Steady-state conditions are maintained by merging the container in a liquid that is at T_{α} and provides a uniform convection coefficient h. Determine the temperature distribution, T(r), in the container. Express your result in terms of $\dot{q}_o, r_o, T_{\infty}, h$, and the thermal conductivity k of the radioactive wastes.

