

L E B A N E S E A M E R I C A N U N I V E R S I T Y

Electrical and Computer Engineering Dept
COE 431

Computer Networks

Spring 2013

Project II

Due date: Tuesday June 4, 2013

Objective

A port scanning tool can be used to probe machines for open ports. Port scanners
are usually employed by network administrators to check to see how secure the
machines in the network are. They are also of interest to malicious users since they
equip them with the capability of finding machines to compromise. This is done
simply by looking for software versions with known vulnerabilities. Nmap is an
example of a well-known open source port scanner and it can be downloaded from:
http://insecure.org/namp.
In this project, your task (if you choose to accept it ☺) is to develop a Java-based
TCP port scanner that the network administrators can use to verify that machines on
their network are running only expected services. This will help you gain a deeper
understanding of the interplay between firewalls, transport protocols and operating
systems.

Scanner details

The program that you will be implementing is expected to identify and recognize the
following five port states:

1. Open: this means that the application is actively accepting TCP connections
on this port. Determining whether or not a given port number is open is one
of the primary goals of your program.

2. Closed: this state implies that the port is accessible to the port scanner but
there is no application using that port.

3. Filtered: Filtering devices, such as firewalls, can prevent a port scanner from
inferring if a port is open. In such cases, your program should infer if a port is
filtered.

For example, to explore a specific TCP port, say port 6789, on a target host, nmap
will send a TCP SYN segment with destination port 6789 to that host. There are three
possible outcomes:

1. The source host receives a TCP SYNACK segment from the target host. Since
this means that an application is running with TCP port 6789 on the target
host, namp return “open”.

2. The source host receives a TCP RST segment from the target host. This
means that the SYN segment reached the target host, but the target host is
not running an application with TCP port 6789. But the attacker at least
knows that the segment destined for the host at port 6789 are not blocked by
any firewall on the path between the source and target hosts.

3. The source receives nothing. This likely means that the SYN segment was
blocked by an intervening firewall and never reached the target host.

Project specification

The basic idea behind a port scanner is simple: given the IP address of a machine
and a list of interesting TCP ports to scan, the scanner will connect on each port
using TCP sockets, then determine whether the port is in one of the above-listed
states before moving on to the next port to scan.

Your scanner should support the following options:

• -help (display invocation options). When your port scanner is invoked on the
command line argument with this option, it should display the various options
available to the user.

• -ports (ports to scan). Your port scanner should scan all well-known ports [1-
1024] by default. However, if this option is specified, it will scan the ports
specified by the user on the command line instead. The latter could be
individual ports separated by commas, or even a range.

• -IP (IP address of the host whose ports should be scanned).

After each invocation, your port scanner should output a succinct summary of the list
of TCP ports on the user-supplied IP address along with their associated states.
Additionally, for each open port, it will include the name of the service that is likely
running. To find the services associated with port numbers 1 through 1024, visit:
http://www.iana.org/assignments/port-numbers.

As the machines you are expected to scan are not under your control, your program
should be designed to handle smartly bad responses from the remote machine. No-
response from the remote machine should not cause your program to crash.
Similarly, your program should timeout in a reasonable period of time (generally a
handful of seconds), no matter how the remote machine responds.

Resources and restrictions

Begin by familiarizing yourself with the nmap software tool. A simple starting point
is to scan your machine. For this project, you are required to use the Java language.
You should consider using an external Java library to complete your project
especially that Java does not support opening sockets through socket system calls.

You must not copy any code from the internet and you must make sure to
be explicit about what resources you use, including web tutorials and any
other web resources.

What to turn in?

The project is due at the beginning of class on the due date. You have to turn in the
following material in both hard and soft copies.

Criteria Percentage

Documentation of your solution including explanations and
illustrations in one or two pages along with short write-up of
questions and/or problems that you encountered while doing this
assignment.

2 pts (10%)

Source code that contains an appropriate amount of comments.
Well-organized and correct code receives 16 pts, messy yet working
code receives 12 pts, code with bugs receives 4 pts, and incomplete
code receives 1 pt.

16 pts (80 %)

Execution output such as a snapshot of the contents of standard
output. A correct output receives 2 pts, the one with minor errors
receives 1 pts, and an incomplete output receives 0 pts.

2 pts (10%)

Total 20pts (100%)

