Exercise 1 The vector space $\mathrm{M}_{2}(\mathbb{R})$ being equipped with its standard inner product (defined by $\left.<A, B>=\operatorname{tr}\left({ }^{( } A\right) B\right)$ for any $\left.A, B \in \mathrm{M}_{2}(\mathbb{R})\right)$, we consider the following two matrices : $A=\left(\begin{array}{ll}8 & 0 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}3 \sqrt{3} & 0 \\ 0 & 3\end{array}\right)$.

1. Compute $\|A\|$ and $\|B\|$. (10 pts)
2. Find the angle between the matrices $A$ and $B$. (10 pts)

Exercise 2 In this exercise, $\mathcal{B}=\left\{e_{1}, e_{2}, e_{3}\right\}$ is the standard basis of $\mathbb{R}^{3}$ and $\mathcal{B}^{\prime}=\left\{e_{1}^{\prime}, e_{2}^{\prime}\right\}$ is the standard basis of $\mathbb{R}^{2}$. We consider the linear map $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ defined by : $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}+3 x_{3}, 4 x_{1}-4 x_{2}+12 x_{3}\right)$ for every $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$.

1. Let $A=[T]_{\mathcal{B}^{\prime}, \mathcal{B}}$ be the representative matrix of $T$ in the bases $\mathcal{B}$ and $\mathcal{B}^{\prime}$.

Write $A$ (find all its entries). ( 5 pts )
2. Check that $T(x)=A x$ for every $x \in \mathbb{R}^{3}$ (here, $x$ and $T(x)$ are written as column vectors). (3 pts)
3. Find a basis for the kernel of $T$. ( 6 pts)
4. What is the rank of $T$ ? Justify your answer. (4 pts)
5. Find a basis for the image of $T$. ( 6 pts)
6. Is $T$ injective? surjective? bijective? Justify your answers. (6 pts)

Exercise 3 Let $V$ be a 3 -dimensional vector space, and $\mathcal{B}=\left\{a_{1}, a_{2}, a_{3}\right\}$ a basis of $V$. We consider the linear operator $T: V \longrightarrow V$ whose representative matrix in $\mathcal{B}$ is the following matrix : $A=\left(\begin{array}{ccc}1 & -1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right)$. The two parts of the problem can be treated independently; however, it is recommended to solve Part I before Part II.

## Part I :

1. Find the eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of $T$. ( 6 pts )
2. Without performing any computation, find, for each eigenvalue $\lambda_{i}$ you obtained in 1 ., the dimension of the corresponding eigenspace $\operatorname{Ker}\left(T-\lambda_{i} \mathrm{Id}_{V}\right)$ (Hint : remember that for any eigenvalue $\lambda$, dim $\operatorname{Ker}\left(T-\lambda I d_{V}\right)$ (the geometric multiplicity of $\lambda$ ) is not greater than the multiplicity of $\lambda$ as root of the characteristic polynomial of $A$ ). ( 5 pts )
3. Deduce that the linear operator $T$ is diagonalizable. (4 pts)
4. Find, for each eigenvalue $\lambda_{i}$, a basis of the corresponding eigenspace $\operatorname{Ker}\left(T-\lambda_{i} \operatorname{Id}{ }_{V}\right)$. ( 6 pts)

## Part II :

1. Let $a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}$ be the vectors of $V$ defined by : $a_{1}^{\prime}=a_{1}, \quad a_{2}^{\prime}=a_{1}+a_{2}, \quad a_{3}^{\prime}=a_{1}+a_{3}$. Check that $\mathcal{B}^{\prime}=\left\{a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right\}$ is a basis of $V$. (2 pts)
2. By expressing the vectors $T\left(a_{1}^{\prime}\right), T\left(a_{2}^{\prime}\right), T\left(a_{3}^{\prime}\right)$ in $\mathcal{B}^{\prime}$, write the matrix $D=[T]_{\mathcal{B}^{\prime}}$. (2 pts)
3. Write the matrices $\left[\mathrm{Id}_{V}\right]_{\mathcal{B}, \mathcal{B}^{\prime}}$ and $\left[\mathrm{Id}_{V}\right]_{\mathcal{B}^{\prime}, \mathcal{B}}$. (2 pts)
4. What matrix would you obtain if you compute the product $\left[\operatorname{Id}_{V}\right]_{\mathcal{B}, \mathcal{B}^{\prime}} \cdot D \cdot\left[\operatorname{Id}_{V}\right]_{\mathcal{B}^{\prime}, \mathcal{B}}$ ? Justify your answer (do not evaluate the product array-wise in this question). (2 pts)
5. Check the result of the preceding question by computing explicitly the product of matrices $\left[\mathrm{Id}_{V}\right]_{\mathcal{B}, \mathcal{B}^{\prime}} \cdot D \cdot\left[\mathrm{Id}_{V}\right]_{\mathcal{B}^{\prime}, \mathcal{B}}$. (2 pts)
6. Give a basis of $\operatorname{Im} T$ made of vectors expressed in $\mathcal{B}^{\prime}$. (2 pts)
7. Give a basis of $\operatorname{Im} T$ made of vectors expressed in $\mathcal{B}$. (2 pts)

Exercise 4 Let $W$ be the vector subspace of $\mathbb{R}^{3}$ spanned by $\mathcal{S}=\left\{b_{1}, b_{2}\right\}$, where $b_{1}=(1,0,0)$ and $b_{2}=(-2,0,-1)$.

1. Check that $\mathcal{S}$ is a basis of $W$. (2 pts)
2. $\mathbb{R}^{3}$ is equipped with its standard Euclidian structure. Check that $\mathcal{S}$ is not an orthonormal basis of $W$. (2 pts)
3. Let $L$ be the vector line spanned by $b_{1}$, and $p_{L}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ the orthogonal projection on $L$. Find a formula giving $p_{L}(x)$ for any $x \in \mathbb{R}^{3}$. (3 pts)
4. Apply Gram-Schmidt process on $\mathcal{S}$ to construct an orthonormal basis $\left\{c_{1}, c_{2}\right\}$ for the vector subspace $W$. (5 pts)

Exercise 5 In the vector space $\mathcal{P}_{9}(\mathbb{R})$ of polynomials whose degree is less or equal to 9 , we consider the vector subspace $W=\mathcal{P}_{4}(\mathbb{R})$. Find the rank and the trace of the linear operator $T_{W}: \mathcal{P}_{9}(\mathbb{R}) \longrightarrow \mathcal{P}_{9}(\mathbb{R})$ which associates to every polynomial $p$ defined by $p(x)=a_{0}+a_{1} x+$ $\ldots+a_{9} x^{9}$ the polynomial $T_{W}(p)$ defined by $T_{W}(p)(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}$. (3 pts)

