Exercise 1 The vector space $M_2(\mathbb{R})$ being equipped with its standard inner product (defined by $\langle A, B \rangle = tr(({}^{t}A)B)$ for any $A, B \in M_2(\mathbb{R})$, we consider the following two matrices : $A = \begin{pmatrix} 8 & 0 \\ 0 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 3\sqrt{3} & 0 \\ 0 & 3 \end{pmatrix}.$

- 1. Compute ||A|| and ||B||. (10 pts)
- 2. Find the angle between the matrices A and B. (10 pts)

Exercise 2 In this exercise, $\mathcal{B} = \{e_1, e_2, e_3\}$ is the standard basis of \mathbb{R}^3 and $\mathcal{B}' = \{e'_1, e'_2\}$ is the standard basis of \mathbb{R}^2 . We consider the linear map $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ defined by : $T(x_1, x_2, x_3) = (x_1 - x_2 + 3x_3, 4x_1 - 4x_2 + 12x_3)$ for every $(x_1, x_2, x_3) \in \mathbb{R}^3$.

- 1. Let $A = [T]_{\mathcal{B}',\mathcal{B}}$ be the representative matrix of T in the bases \mathcal{B} and \mathcal{B}' . Write A (find all its entries). (5 pts)
- 2. Check that T(x) = Ax for every $x \in \mathbb{R}^3$ (here, x and T(x) are written as column vectors). $(3 \ pts)$
- 3. Find a basis for the kernel of T. (6 pts)
- 4. What is the rank of T? Justify your answer. (4 pts)
- 5. Find a basis for the image of T. (6 pts)
- 6. Is T injective? surjective? bijective? Justify your answers. (6 pts)

Exercise 3 Let V be a 3-dimensional vector space, and $\mathcal{B} = \{a_1, a_2, a_3\}$ a basis of V. We consider the linear operator $T: V \longrightarrow V$ whose representative matrix in \mathcal{B} is the following matrix : $A = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$. The two parts of the problem can be treated independently;

however, it is recommended to solve Part I before Part II.

Part I:

- 1. Find the eigenvalues λ_1 , λ_2 , λ_3 of T. (6 pts)
- 2. Without performing any computation, find, for each eigenvalue λ_i you obtained in 1., the dimension of the corresponding eigenspace $\operatorname{Ker}(T - \lambda_i \operatorname{Id}_V)$ (*Hint* : remember that for any eigenvalue λ , dim Ker $(T - \lambda Id_V)$ (the geometric multiplicity of λ) is **not** greater than the multiplicity of λ as root of the characteristic polynomial of A). (5 pts)
- 3. Deduce that the linear operator T is diagonalizable. (4 pts)
- 4. Find, for each eigenvalue λ_i , a basis of the corresponding eigenspace $\operatorname{Ker}(T-\lambda_i \operatorname{Id}_V)$. (6 pts)

Part II:

- 1. Let a'_1, a'_2, a'_3 be the vectors of V defined by : $a'_1 = a_1, a'_2 = a_1 + a_2, a'_3 = a_1 + a_3.$ Check that $\mathcal{B}' = \{a'_1, a'_2, a'_3\}$ is a basis of V. (2 pts)
- 2. By expressing the vectors $T(a'_1)$, $T(a'_2)$, $T(a'_3)$ in \mathcal{B}' , write the matrix $D = [T]_{\mathcal{B}'}$. (2 pts)
- 3. Write the matrices $[\mathrm{Id}_V]_{\mathcal{B},\mathcal{B}'}$ and $[\mathrm{Id}_V]_{\mathcal{B}',\mathcal{B}}$. (2 pts)

- 4. What matrix would you obtain if you compute the product $[\mathrm{Id}_V]_{\mathcal{B},\mathcal{B}'} \cdot D \cdot [\mathrm{Id}_V]_{\mathcal{B}',\mathcal{B}}$? Justify your answer (do **not** evaluate the product array-wise in **this** question). (2 pts)
- 5. Check the result of the preceding question by computing explicitly the product of matrices $[\mathrm{Id}_V]_{\mathcal{B},\mathcal{B}'} \cdot D \cdot [\mathrm{Id}_V]_{\mathcal{B}',\mathcal{B}}$. (2 pts)
- 6. Give a basis of Im T made of vectors expressed in \mathcal{B}' . (2 pts)
- 7. Give a basis of Im T made of vectors expressed in \mathcal{B} . (2 pts)

Exercise 4 Let W be the vector subspace of \mathbb{R}^3 spanned by $\mathcal{S} = \{b_1, b_2\}$, where $b_1 = (1, 0, 0)$ and $b_2 = (-2, 0, -1)$.

- 1. Check that S is a basis of W. (2 pts)
- 2. \mathbb{R}^3 is equipped with its standard Euclidian structure. Check that \mathcal{S} is **not** an orthonormal basis of W. (2 pts)
- 3. Let L be the vector line spanned by b_1 , and $p_L : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ the orthogonal projection on L. Find a formula giving $p_L(x)$ for any $x \in \mathbb{R}^3$. (3 pts)
- 4. Apply Gram-Schmidt process on S to construct an orthonormal basis $\{c_1, c_2\}$ for the vector subspace W. (5 pts)

Exercise 5 In the vector space $\mathcal{P}_9(\mathbb{R})$ of polynomials whose degree is less or equal to 9, we consider the vector subspace $W = \mathcal{P}_4(\mathbb{R})$. Find the rank and the trace of the linear operator $T_W : \mathcal{P}_9(\mathbb{R}) \longrightarrow \mathcal{P}_9(\mathbb{R})$ which associates to every polynomial p defined by $p(x) = a_0 + a_1x + \dots + a_9x^9$ the polynomial $T_W(p)$ defined by $T_W(p)(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$. (3 pts)