AMERICAN UNIVERSITY OF BEIRUT
 Mathematics Department
 Math 218 - Quiz I
 Fall 2006-2007

Name:

ID:
Section: 4 (@ 12:30) 5 (@ 9:30)

I- (10 points) Consider the following matrices,

$$
\mathrm{A}=\left[\begin{array}{cccc}
1 & -1 & -1 & 0 \\
0 & 1 & 7 & 3 \\
0 & 2 & -3 & 5
\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{ccc}
0 & -1 & 8 \\
1 & 0 & 4 \\
-2 & 0 & -3
\end{array}\right] \quad \mathrm{C}=\left[\begin{array}{cccc}
1 & -2 & 0 & 0 \\
1 & 5 & 1 & 0 \\
0 & 3 & 8 & 0
\end{array}\right]
$$

Calculate $B^{T} A-C$.

II- Let

$$
A=\left[\begin{array}{ccc}
3 & 2 & 6 \\
5 & 1 & 1 \\
0 & -2 & 3
\end{array}\right]
$$

(a) (8 points) Find $\operatorname{det}(A)$. (Use any one of the three methods that you know)
(b) (7 points) Find $\operatorname{adj}(A)$.
(c) (6 points) Deduce A^{-1}.

III- (a) (12 points) Find the conditions that the b's should satisfy so that the system is consistent. (If there are any)

$$
\left\{\begin{array}{l}
3 x_{1}+27 x_{2}+14 x_{3}-3 x_{4}=b_{1} \\
x_{2}+3 x_{4}=b_{2} \\
-2 x_{1}+2 x_{2}-6 x_{3}+12 x_{4}=b_{3} \\
x_{1}+5 x_{2}+3 x_{3}+2 x_{4}=b_{4}
\end{array}\right.
$$

(Continue your answer here)
(b) (4 points)Using part (a), explain why the following matrix B is invertible,

$$
\mathrm{B}=\left[\begin{array}{cccc}
3 & 27 & 14 & -3 \\
0 & 1 & 0 & 3 \\
-2 & 2 & -6 & 12 \\
1 & 5 & 3 & 2
\end{array}\right]
$$

IV- (a) (5 points) If A is an invertible matrix, show that the system $A x=b$ has a unique solution.
(b) (7 points) Assuming that the stated inverses exist, show that,

$$
(B+A C)^{-1} A=\left(C^{-1} A^{-1} B+I\right)^{-1} C^{-1}
$$

(c) (8 points) If E is a symmetric matrix and $A D\left(E^{-1}\right)^{T}=\left(E A^{-1}\right)^{-1}$, show that $D=I$.

V- (a) (5 points) Prove the following identity without directly computing the determinant.

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1}+s a_{1}+t b_{1} \\
a_{2} & b_{2} & c_{2}+s a_{2}+t b_{2} \\
a_{3} & b_{3} & c_{3}+s a_{3}+t b_{3}
\end{array}\right|=\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| .
$$

(b) (5 points) Use (a) to show that,

$$
\left|\begin{array}{lll}
1 & 2 & 123 \\
4 & 5 & 456 \\
7 & 8 & 789
\end{array}\right|=\left|\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right| .
$$

V- It is a known fact that if A is a 3×3 matrix with $|A|=1$ and some other properties, then multiplication by A is a rotation about some axis of rotation through an angle θ.
For this question consider $u=(a, b, c)$ to be a vector that determines this axis and has length 1 , then the standard matrix representing the rotation is,

$$
\left[\begin{array}{ccc}
a^{2}(1-\cos \theta)+\cos \theta & a b(1-\cos \theta)-c \sin \theta & a c(1-\cos \theta)+b \sin \theta \\
a b(1-\cos \theta)+c \sin \theta & b^{2}(1-\cos \theta)+\cos \theta & b c(1-\cos \theta)-a \sin \theta \\
a c(1-\cos \theta)-b \sin \theta & b c(1-\cos \theta)+a \sin \theta & c^{2}(1-\cos \theta)+\cos \theta
\end{array}\right]
$$

(10 points) Prove that $\cos \theta=\frac{\operatorname{tr}(A)-1}{2}$.

VI- YOU DO NOT NEED TO PROVE ANY OF YOUR ANSWERS IN THIS QUESTION.

a- (10 points) Answer TRUE or FALSE.
i- A system of linear equations that doesn't have infinitely many solutions must have a unique solution.
ii- T is a linear transformation if and only if there is a matrix A such that $T(x)=A x$ for all x in the domain of T.
iii- If A is an invertible $n \times n$ matrix then for all $n \times 1$ matrices b, there is a nonzero vector x such that $A(3 x)=b$.
iv- If A is a square matrix with all of its entries being integers and with $\operatorname{det}(A)=-1$, then all the entries of A^{-1} are integers.
b- (3 points) A student was multiplying an $m \times k$ matrix A with a $k \times n$ matrix B. He copied one entry of A wrongly. If he wants to correct his mistake, how many entries of the product $A B$ does he have to check?

Your answer: \qquad

