
School of Arts & Sciences
Department of Computer Science & Mathematics

CSC 447—Parallel Programming for Multicore
and Cluster Systems

Spring 2015

Final Examination—Solution, v1.0

Name: Student ID:

Signature: Duration: 75 minutes

General Instructions

• There are 6 questions and 8 pages. Make sure that you have all of them.

• Exam questions are NOT sorted by order of difficulty. Scan the exam before you start and budget
your time over the exam questions so you can maximize your grade.

• Your answers should be brief and right to the point. There is no need for essay answers! Use the
back of the previous sheet if you need additional space.

• Your handwriting should be readable so it can be graded. You are liable to have points deducted
from your grade if your handwriting is excessively difficult to decipher!

• The exam is a closed book, closed notes, and closed neighbor exam. Any attempts at cheating
or communicating with a neighbor will lead to expulsion from the exam!

Question Points Score

1 21

2 12

3 20

4 15

5 17

6 15

Total: 100

CSC 447: Final Examination–Soln., v1.0 2015-03-26

Multiple-Choice Questions

1.(21) Answer the following questions with a True or False. Justify the answer if it is false.

(a) According to Amdahl’s law, the maximum speed-up of a parallel computation given that 80%
of the computation can be executed in parallel is 10.

(a) False. Answer is 5

(b) If we have an algorithm whose sequential complexity is O(N) and we parallelize it with P
processors, the maximum speedup we would expect is N logN

(b) False. We expect N

(c) Flynn’s taxonomy classifies computer systems into four categories (SISD, SPMD, MISD, MIMD)
according to the number of instruction and data streams used.

(c) False. SPMD should not be there

(d) Hypercube is the topology with the smallest diameter for a machine whose number of nodes is
a power of 2.

(d) False. diameter of hypercube is log n

(e) Whenever producers and consumers use locks, the producer thread must overwrite the shared
buffer when the previous task has not been picked up by a consumer thread. The consumer
threads must continue on picking up tasks until done. Individual consumer threads should pick
up tasks one at at time.

(e) False

(f) If a program is running concurrently it is also running in parallel.

(f) False

(g) The main advantages for the shared memory parallel architecture are simplified programming
and potential memory capacity. Some of the disadvantages are high cost and limited scalability

(g) True

Spring 2015 Page 2 of 8

CSC 447: Final Examination–Soln., v1.0 2015-03-26

2.(12) Select the appropriate answer.

(a) Indicate which of the following phenomena contributed to the rise of multicore computing:

A. Limitations on cooling technologies

B. Limitations on software complexity

C. Limitations on on-chip bandwidth

D. Limitations on scalability of single core designs

(b) Which of the following is not an alternative for Shared Memory Multiprocessors.

A. Using sequential library routines with an existing sequential programming
language

B. Using a sequential programming language with a parallelizing compiler

C. UNIX processes

D. Threads

(c) In programming shared address space, the following is true:

A. Threads assume all memory is global.

B. Threads assume all memory is local.

C. Memory manipulation is slower.

D. Process based models assume that memory is public and available to other processors.

(d) Which of the following is a valid reason for using threads.

A. Software Portability

B. Latency Hiding

C. Scheduling and Load Balancing

D. Ease of Programming

E. All of the above

(e) How many threads could be used for the computation below, each thread executing one or more
of the instructions:

x++ ;

a = x + 2;

b = a + 3;

c++;

A. Two concurrent threads.

B. Three concurrent threads.

C. Four concurrent threads.

D. None of the above. The code is not parallelizable.

(f) Which of the following specifies that the variable is to be initialized in an OpenMP program.

A. private

B. firstprivate

C. shared

D. reduction

(g) If two threads execute the instruction x++ where x is a shared variable initialized to 0, what
are the possible values that x could have after the execution of the threads:

A. x = 2 if at different times and x = 1 if interleaved

B. x = 1 since threads will execute at different times

C. x = 2 since threads will be interleaved.

D. None of the above

(h) The only way to significantly increase the performance of microprocessors is to:

A. Improve power efficiency at about the same rate as the performance in-
crease.

B. Use good compilers

C. Use faster chips

Spring 2015 Page 3 of 8

CSC 447: Final Examination–Soln., v1.0 2015-03-26

D. Use efficient algorithms

Parallel Performance

Name:

1. Examine the task graph shown below. Each task, which you can think of as an async, is labelled with
its runtime. Answer the following four questions about the program’s runtime. In all cases you may
ignore any work scheduling or task spawning overheads.

S1 = 50ms

P1 =
100ms

P2 =
100ms

P3 =
100ms

P4 =
2000ms

S2 = 50ms

P5 =
100ms

P6 =
500ms

P7 =
100ms

P8 =
100ms

S2 = 50ms

(a) Assuming a single worker thread (X10 NTHREADS=1) what is the runtime of this program?
The single worker thread must execute all of the tasks serially, so
T1 = 50 + (2000 + 100 + 100 + 100) + 50 + (100 + 500 + 100 + 100) + 50 = 3250ms

(b) What is the speedup when X10 NTHREADS=8? The stages are now executed in parallel,
with the duration of the stage determined by the slowest task: T8 = 50 + (2000) + 50 +
(500) + 50 = 2650ms, so the speedup is T1

T8
or 1.226.

(c) If each parallel task (PN = Xms) were parallelized further to become two parallel tasks (QN =
X
2 ms,RN = X

2 ms), and again run with X10 NTHREADS=8, what would the runtime be? What
is the speedup be relative to the previous run? The slowest task in the parallel stage is
now twice as fast meaning: T ′

8 = 50 + (2000
2) + 50 + (500

2) + 50 = 1400ms, so the speedup

is T8

T ′
8

or 1.89.

(d) Why is the speedup not 2×? This is due to Amdahl’s Law. To achieve a 2x overall
speedup, the entire program would need to be sped up by a factor of two, but only
a portion of the program was. The serial tasks were unchanged.

COMS 4995 Principles and Practice of Parallel Programming - Midterm Exam Page 2 of 8

3. (a)(5) Assuming a single worker thread (X10 NTHREADS=1) what is the runtime of this program?

Solution:

The single worker thread must execute all of the tasks serially, so T1 = 50 + (2000 + 100
+ 100 + 100) + 50 + (100 + 500 + 100 + 100) + 50 = 3250ms

(b)(5) What is the speedup when X10 NTHREADS=8?

Solution:

The stages are now executed in parallel, with the duration of the stage determined by the
slowest task: T8 = 50 + (2000) + 50 + (500) + 50 = 2650ms, so the speedup is T1

T8 or or
1.226.

(c)(5) If each parallel task (PN = Xms) were parallelized further to become two parallel tasks (QN =
X
2 ms,RN = X

2 ms), and again run with X10 NTHREADS=8, what would the runtime be?
What is the speedup be relative to the previous run?

Solution:

The slowest task in the parallel stage is now twice as fast meaning: T ′
8 = 50 + (2000

2) + 50 +

(500
2) + 50 = 1400ms, so the speedup is T8

T ′
8

or 1.89.

(d)(5) Why is the speedup not 2×?

Solution:

This is due to Amdahl’s Law. To achieve a 2x overall speedup, the entire program would
need to be sped up by a factor of two, but only a portion of the program was. The serial
tasks were unchanged.

4.(15) Parallelize Floyd’s algorithm shortest all pairs shortest path using OpenMP. You can assume that
matrix A is given as input and the number of nodes is n. Recall that the sequential Floyd’s algorithm
maybe implemented using the following code segment:

for (k=0; k<n; k++)

for (i=0; i<n; i++)

for (j=0; j<n; j++)

Spring 2015 Page 4 of 8

CSC 447: Final Examination–Soln., v1.0 2015-03-26

if ((d[i][k]+d[k][j]) < d[i][j])

d[i][j] = d[i][k]+d[k][j];

Solution:

#pragma omp parallel default(shared) private(i,j,k)

{

for (k=0; k<n; k++)

#pragma omp for

for (i=0; i<n; i++)

for (j=0; j<n; j++)

if ((d[i][k]+d[k][j]) < d[i][j])

d[i][j] = d[i][k]+d[k][j];

}

Comment: It is very important to use the private(i,j,k) clause, otherwise the OpenMP paral-
lelization won?t work.

Multi-Core Programming using Pthreads

5.(17) One of the OpenMP constructs that is the reduction operator. For instance, the dot product of two
vectors can be computed as follows:

/* Compute and return the dot produce of vectors ’a’ and ’b’. */

double vector_dot_product(double *a, double *b, int n)

{

double dotproduct = 0;

int i;

#pragma omp parallel for reduction(+:dotproduct)

for (i = 0; i < n; i++)

dotproduct += a[i] * b[i];

return dotproduct;

}

Show the above code using pThreads. Be sure to include all necessary synchronization code. To
simplify the problem, you may assume that the number of threads nT is a constant, and that n %

nT == 0. You may also assume that each parallel region spawns a new team of threads (though
real-world OpenMP implementations reuse a pool of threads). Your code must be thread-safe, but
must avoid unnecessary or excessive synchronization.

Solution:

/* A unit of work ? chunks of three vectors

* ?a?, ?b?, and ?sum? of equal length ?n?

*/

struct vector_chunk {

double *a, *b, dotproduct;

Spring 2015 Page 5 of 8

CSC 447: Final Examination–Soln., v1.0 2015-03-26

int n;

};

/* Compute partial dot product for a chunk of two vectors */

static void *dot_product_chunk(void *_chunk)

{

struct vector_chunk *chunk = _chunk;

int i;

double dotproduct = 0;

for (i = 0; i < chunk->n; i++)

dotproduct += chunk->a[i] * chunk->b[i];

chunk->dotproduct = dot_product;

return NULL;

}

/* Compute and return the dot produce of vectors ’a’ and ’b’. */

double

vector_dot_product(double *a, double *b, int n)

{

int thread;

tid_t threadids[NT];

struct vector_chunk *chunk[NT];

// start NT-1 threads and assign a chunk of the vector

// dot product to each thread

for (thread = 0; thread < NT - 1; thread++) {

chunk[thread] = malloc(sizeof *chunk);

chunk[thread]->a = a + thread * n/NT;

chunk[thread]->b = b + thread * n/NT;

chunk[thread]->n = n / NT;

threadids[thread] =

thread_create(add_chunk, chunk[thread]);

}

// set up work unit for master thread

struct vector_chunk master_thread_chunk = {

.a = a + thread * n/NT,

.b = b + thread * n/NT,

.n = n / NT

};

dot_product_chunk(&master_thread_chunk);

double dotproduct = master_thread_chunk.dotproduct;

// wait until all threads have finished their work

for (thread = 0; thread < NT - 1; thread++) {

thread_join(threadids[thread]);

dotproduct += chunk[thread]->dotproduct;

free(chunk[thread]);

}

return dotproduct;

}

Spring 2015 Page 6 of 8

CSC 447: Final Examination–Soln., v1.0 2015-03-26

Multi-Core Programming using OpenMP

6.(15) Write an OpenMP producer-consumer algorithm. The producer generates a set of random numbers
and then adds them to the tail of the queue. The producer uses a work stealing algorithm where it
would go through the head of the queue and retrieves one element at a time. The producer will then
invoke a method process with the dequeued element as an argument. The algorithm repeats until
the queue is empty and no random numbers are generated. There is no need to worry about the
implementation of the process method. Furthermore, there is no need to worry about any methods
declarations. A sequential version could look like:

void Producer(Queue *p) {

int myRand;

while (flag > 0)

{

myRand = rand();

enqueue(p, myRand);

flag = (myRand > 1,0000,000)

}

// CONSUMER: Sum the data in A

double Consumer() {

int myRand;

Queue *p;

while (p != NULL)

{

myRand = dequeue(p);

process(p);

}

Solution:

flag = 0;

#pragma omp parallel

{

#pragma omp section

{

fillrand(N,A);

#pragma omp flush

flag = 1;

#pragma omp flush(flag)

}

#pragma omp section

{

while (!flag)

#pragma omp flush(flag) #pragma omp flush

sum = sum_array(N,A);

}

}

This page was left blank intentionally

Spring 2015 Page 7 of 8

CSC 447: Final Examination–Soln., v1.0 2015-03-26

Pthreads API Cheat Sheet

Pthread creation

pthread_t threads[N]

pthread_create(&threads[i], NULL, start_routine, void *args)

pthread_join(threads[i])

Mutex

pthread_mutex_t mutex;

pthread_mutex_init(&mutex);

pthread_mutex_lock(&mutex);

pthread_mutex_unlock(&mutex);

pthread_mutex_destroy(&mutex);

Semaphore

sem_t sem;

sem_init(&sem, 0, initial) -> initial = 0: lock, initial > 0: unlocked

sem_wait(&sem) -> sem = 0: wait, sem > 0 decrement and go

sem_post(&sem) -> increment value

sem_destroy(&sem)

Condition Variable

pthread_cond_t cond

pthread_cond_init(&cond)

pthread_cond_wait(&cond, &mutex) -> unlock mutex and wait on cond

pthread_cond_signal(&cond) -> wake up threads waiting on cond

pthread_cond_destroy(&cond)

Common Condition Variable Usage

pthread_mutex_lock(&mutex);

while(isnotready()) pthread_cond_wait(&cond, &mutex);

critical section

pthread_mutex_unlock(&mutex);

pthread_cond_signal(&cond2);

Spring 2015 Page 8 of 8

