Name: _____

Student ID:_____

Instructions:

- 1. This exam has 5 pages. Please make sure you have all pages.
- 2. The point value of each problem occurs to the left of the problem.
- 3. You must show correct work to receive credit. Correct answers with inconsistent work or with no justification will not be given credit.
- 4. Only non-graphing and non-programmable calculators are allowed.
- 5. Turn off and put away all cell phones.

Page	Points	Points Possible
2		11
3		12
4		9
5		8
Total		40

Math 218

Name: _

1. (4 pts) For which values of k do the vectors $\begin{bmatrix} -1\\1\\k \end{bmatrix}$, $\begin{bmatrix} 0\\1\\3 \end{bmatrix}$ and $\begin{bmatrix} k\\2\\2 \end{bmatrix}$ form a basis for \mathbb{R}^3 ?

2. Let
$$t : \mathbb{R}^3 \to \mathbb{R}^3$$
 be given by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} 6x + 3y \\ 4x + 2y + z \\ 4z \end{bmatrix}$.

(a) (4 pts) Find a basis for R(T).

(b) (3 pts) Is T an isomorphism?

Name:

- **3.** Let $T : \mathcal{P}_2 \to \mathcal{P}_1$ be given by T(p(x)) = xp(1) + p(0).
 - (a) (4 pts) Show that T is a linear transformation.

(b) (4 pts) Find $\ker(T)$.

(c) (4 pts) Find R(T).

Name: _____

4. (4 pts) Let $T: V \to W$ be a linear transformation. Determine whether $\{\mathbf{v} \in V \mid T(\mathbf{v}) \neq \mathbf{0}\}$ is a subspace of V.

5. (5 pts) Suppose S and T are subspaces of a vector space V. Define $W = \{2\mathbf{u} + 3\mathbf{v} \mid \mathbf{u} \in S, \mathbf{v} \in T\}$. Determine whether W is a subspace of V.

Name: _

6. (3 pts) Find a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ and a linearly independent subset $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ of \mathbb{R}^3 such that $\{T(\mathbf{v_1}), T(\mathbf{v_2}), T(\mathbf{v_3})\}$ is linearly dependent.

7. (5 pts) Let $T: V \to W$ be a linear transformation and let $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ be a subset of V. Show that if T is one-to-one and $\{T(\mathbf{v_1}), T(\mathbf{v_2}), T(\mathbf{v_3})\}$ is linearly dependent then $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ is also linearly dependent.