Name: _____

Student ID:_____

Instructions:

- 1. You must show correct work to receive credit. Correct answers with inconsistent work will not be given credit.
- 2. Books and notes are not allowed.
- 3. You may use a simple calculator.
- 4. Turn off and put away all cell phones.

Page	Points	Points Possible
2		12
3		14
4		11
5		13
Total		50

Name: _

- **1.** Let $B_1 = \left\{ \begin{bmatrix} 3\\5 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$ and $B_2 = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\3 \end{bmatrix} \right\}$ be two ordered bases of \mathbb{R}^2 .
 - a) Find the transition matrix $[I]_{B_1}^{B_2}$ between B_1 and B_2 .

b) If
$$[v]_{B_1} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
, find $[v]_{B_2}$.

Math 218	$\operatorname{Quiz} 2$	Spring 2010
Name:		
2. Let $T : \mathbb{R}^5 \to \mathbb{R}^4$ be given by	$T(v) = \begin{bmatrix} 1 & 4 & 2 & 0 \\ 3 & 2 & 0 & 2 \\ 1 & -6 & -4 & 1 \\ 6 & 4 & 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 4\\4\\-5\\3 \end{bmatrix} v.$ Prove or disprove

⁽a) (8 pts) T is one-to-one.

(b) (4 pts) T is onto.

Name: _

3. (6 pts) Let $T : \mathbb{R}^3 \to R^3$ be a linear operator and $B = \{v_1, v_2, v_3\}$ a basis for \mathbb{R}^3 . Suppose $T(v_1) = \begin{bmatrix} -1\\2\\2 \end{bmatrix}, T(v_2) = \begin{bmatrix} 0\\2\\0 \end{bmatrix}$ and $T(v_3) = \begin{bmatrix} 2\\5\\-4 \end{bmatrix}$. (a) Determine whether $w = \begin{bmatrix} 5\\7\\3 \end{bmatrix}$ belongs to R(T).

(b) Find a basis for R(T).

(c) Find a basis for \mathbb{R}^3 containing $T(v_1)$.

Name: _____

- 4. (8 pts) Let $T: M_{2x2} \to M_{2x2}$ be given by $T(A) = A A^t$.
 - (a) Show that T is a linear transformation.

(b) Find N(T).

(c) Find a basis for N(T).

(d) Find $\dim(R(T))$.

Name: _____

5. (3 pts) Let $W = \{p(x) \in \mathcal{P}_3 | p(1) = p(-1)\}$. Find a basis for W.