Name: \qquad
Student ID:

Instructions:

1. You must show correct work to receive credit. Correct answers with inconsistent work will not be given credit.
2. Books and notes are not allowed.
3. You may use a simple calculator.
4. Turn off and put away all cell phones.

Page	Points	Points Possible
2		12
3		14
4		11
5		13
Total		50

Name:

1. Let $B_{1}=\left\{\left[\begin{array}{l}3 \\ 5\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ and $B_{2}=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 3\end{array}\right]\right\}$ be two ordered bases of \mathbb{R}^{2}.
a) Find the transition matrix $[I]_{B_{1}}^{B_{2}}$ between B_{1} and B_{2}.
b) If $[v]_{B_{1}}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$, find $[v]_{B_{2}}$.

Name:
2. Let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$ be given by $T(v)=\left[\begin{array}{rrrrr}1 & 4 & 2 & 0 & 4 \\ 3 & 2 & 0 & 2 & 4 \\ 1 & -6 & -4 & 1 & -5 \\ 6 & 4 & 0 & -1 & 3\end{array}\right] v$. Prove or disprove
(a) (8 pts) T is one-to-one.
(b) $(4 \mathrm{pts}) T$ is onto.

Name:
3. (6 pts) Let $T: \mathbb{R}^{3} \rightarrow R^{3}$ be a linear operator and $B=\left\{v_{1}, v_{2}, v_{3}\right\}$ a basis for \mathbb{R}^{3}. Suppose $T\left(v_{1}\right)=\left[\begin{array}{c}-1 \\ 2 \\ 2\end{array}\right], T\left(v_{2}\right)=\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]$ and $T\left(v_{3}\right)=\left[\begin{array}{c}2 \\ 5 \\ -4\end{array}\right]$.
(a) Determine whether $w=\left[\begin{array}{l}5 \\ 7 \\ 3\end{array}\right]$ belongs to $R(T)$.
(b) Find a basis for $R(T)$.
(c) Find a basis for \mathbb{R}^{3} containing $T\left(v_{1}\right)$.

Name:
4. (8 pts) Let $T: M_{2 x 2} \rightarrow M_{2 x 2}$ be given by $T(A)=A-A^{t}$.
(a) Show that T is a linear transformation.
(b) Find $N(T)$.
(c) Find a basis for $N(T)$.
(d) Find $\operatorname{dim}(R(T))$.

Name:
5. (3 pts) Let $W=\left\{p(x) \in \mathcal{P}_{3} \mid p(1)=p(-1)\right\}$. Find a basis for W.

