Notes

Notes

Two-Factor ANOVA

Dr. Jordan Srour

BUS 301: Int. Bus. Stats Lebanese American University

27 November 2013

QBA 301

Overview

QBA 301 27 November 2013 2 / 13

27 November 2013 1 / 13

Today's Lecture

ur (LAU

- Case II, reminder, Due by 5pm, 28 November.
- Quiz 2: In-class, 9 December 2013
- Assignment 5
- Overview of Week

ur (ΙΔΠ

- Review
- Two-Factor ANOVA (14.5)

Case Study Part II, due 28 November 2013

Case Study Reminder

Notes

- Done as partners each pair of two people hands in one letter.
- Submission is a letter...do NOT hand in reams of excel sheets.
- Clearly write your findings; use tables and charts as necessary.

Assignment 5, Due Start of Class, 4 December

Assignment 5, Due 4 December, Start of Class

Notes

Notes

Assignment requires you to fill out a worksheet and solve the following four book problems:

13.93

2 14.9

14.37

14.75

NOTE: We will work on Problems 14.9 and 14.37 together in the lab on Friday.

QBA 301

27 November 2013 4 / 13

Overview of Week

F.J.Srour (LAU)

Monday: Two-Factor ANOVA (on Quiz 2) Wednesday (Today): Two-Factor ANOVA, reviewed (on Quiz 2) Friday: In Computer Lab (Practice with ANOVA.)

Overview of Week

Example

A survey was conducted wherein Americans aged between 37 and 45 were asked how many jobs they have held in their lifetimes. Also recorded were gender and educational attainment. Can we infer that differences exist between genders and educational levels?

Two-Factor ANOVA, Excel

Male E1	Male E2	Male E3	Male E4	Female E1	Female E2	Female E3	Female E4
10	12	15	8	7	7	5	7
9	11	8	9	13	12	13	9
12	9	7	5	14	6	12	3
16	14	7	11	6	15	3	7
14	12	7	13	11	10	13	9
17	16	9	8	14	13	11	6
13	10	14	7	13	9	15	10
9	10	15	11	11	15	5	15
11	5	11	10	14	12	9	4
15	11	13	8	12	13	8	11

Notes

QBA 301 27 November 2013 5 / 13

Four Types of Hypotheses

Two-Factor ANOVA, Excel

 One-Way ANOVA

 H_0 : The means of all the groupings are equal.

 H_1 : At least one mean differs.

 Differences between Levels of Factor A

 H_0 : The means of the a levels of factor A are equal.

 H_1 : At least one mean differs.

 Differences between Levels of Factor B

 H_0 : The means of the b levels of factor B are equal.

 H_1 : At least one mean differs.

 Differences between Levels of Factor B

 H_0 : The means of the b levels of factor B are equal.

 H_1 : At least one mean differs.

 Test of Interaction between Factor A and Factor B

 H_0 : Factors A and B do not interact to affect the mean responses.

 H_1 : Factors A and B do interact to affect the mean responses.

 H_1 : Factors A and B do interact to affect the mean responses.

One-Way ANOVA Results

F.J.Srour (LAU)

	A	В	С	D	E	F	G
1	Anova: Single Factor						
2							
3	SUMMARY						
4	Groups	Count	Sum	Average	Variance		
5	Male E1	10	126	12.60	8.27		
6	Male E2	10	110	11.00	8.67		
7	Male E3	10	106	10.60	11.60		
8	Male E4	10	90	9.00	5.33		
9	Female E1	10	115	11.50	8.28		
	Female E2	10	112	11.20	9.73		
11	Female E3	10	94	9.40	16.49		
12	Female E4	10	81	8.10	12.32		
13							
14							
15	ANOVA						
16	Source of Variation	SS	df	MS	F	P-value	F crit
17	Between Groups	153.35	7	21.91	2.17	0.0467	2.1397
18	Within Groups	726.20	72	10.09			
19							
20	Total	879.55	79				

QBA 301

27 N

ber 2013 8 / 13

What can we conclude? Reject H_0 ; There are differences.

Two-Factor ANOVA, Excel

Overview of Two Factor Data Structure

Two-Factor ANOVA, Excel

Notes

Notes

Notes

Two-Factor ANOVA, Excel Test for Differences in A and B and Interactions

Notes

Four Test Statistics

One-Way ANOVA					
$F = \frac{MST}{MSE}$					
Differences between Levels of Factor A					
$F = \frac{MS(A)}{MSE}$					
Differences between Levels of Factor B					
$F = \frac{MS(B)}{MSE}$					
Test of Interaction between Factor A and Factor B					
$F = \frac{MS(AB)}{MSE}$					

QBA 301 27 November 2013 11 / 13

Two-Factor ANOVA, Excel

Notes

Example in Excel

ır (LAU

Notes

What can we conclude from the Two-Factor With Replication ANOVA in Excel?

wo-Factor ANOVA, Excel

QBA 301 27 November 2013 12 / 13

	Two-Factor ANOVA, Excel	
Next Time		
 In Lab 		

F.J.Srour (LAU) QBA 301 27 November 2013 13 / 13

Notes

_

_

Notes

Notes

_