Name: \qquad
Student ID:

Instructions:

1. You must show correct work to receive credit. Correct answers with inconsistent work will not be given credit.
2. Books, notes and calculators are not allowed.
3. Turn off and put away all cell phones.

Question	Points	Points Possible
1		5
2		5
3		10
4		10
5		5
6		5
7		5
8		50
Total		

Name:

\qquad

1. (5 pts) Determine whether \mathbf{v} is a linear combination of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ where

$$
\mathbf{v}=\left[\begin{array}{l}
2 \\
8 \\
4
\end{array}\right], \quad \mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], \quad \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{r}
-1 \\
4 \\
3
\end{array}\right] .
$$

2. (5 pts) Determine the values of a, b, and c for which the linear system is consistent.

$$
\left\{\begin{aligned}
x+2 y-3 z & =a \\
2 x+3 y+3 z & =b \\
5 x+9 y-6 z & =c
\end{aligned}\right.
$$

Name:
3. (5 pts each) Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 3 \\ 1 & 2 & 4\end{array}\right]$.
(a) Find the inverse of A .
(b) Use (a) to solve the system $A \mathbf{x}=\left[\begin{array}{r}1 \\ -2 \\ 4\end{array}\right]$.

Name:
4. (5 pts each) If $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]$ and $\operatorname{det}(A)=5$, find
(a) $\operatorname{det}\left(2 A^{2} A^{t} A^{-1}\right)$
(b) $\operatorname{det}\left(\left[\begin{array}{lll}a_{1} & a_{1}+2 b_{1} & 3 a_{1}+c_{1} \\ a_{2} & a_{2}+2 b_{2} & 3 a_{2}+c_{2} \\ a_{3} & a_{3}+2 b_{3} & 3 a_{3}+c_{3}\end{array}\right]\right)$

Name:

5. (5 pts) Find all values of a for which the inverse of $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & a & 0 \\ 1 & 2 & a\end{array}\right]$ exists.
6. (5 pts) Let A and B be two $n \times n$ matrices. If $A B$ is invertible, must both A and B be invertible? Justify your answer.

Name:
7. (5 pts) Let A and B be symmetric matrices. Show that $A B$ is symmetric if and only if $A B=B A$.
8. (5 pts) Let A be a 4×4 invertible matrix. Find $\operatorname{det}(A)$ if $A^{t}=2 A^{-1}$.

