Name: \qquad
Student ID: \qquad

Instructions:

1. This exam has 5 pages. Please make sure you have all pages.
2. The point value of each problem occurs to the left of the problem.
3. You must show correct work to receive credit. Correct answers with inconsistent work or with no justification will not be given credit.
4. Only non-graphing and non-programmable calculators are allowed.
5. Turn off and put away all cell phones.

Page	Points	Points Possible
2		14
3		14
4		14
5		8
Total		50

Name:

1. Let $A=\left[\begin{array}{rrrr}4 & 2 & 3 & 1 \\ 1 & 0 & -3 & -1 \\ 6 & 4 & 6 & 2 \\ 8 & 4 & 3 & 1\end{array}\right]$.
(a) (6 pts) Find the reduced row echelon form of A.
(b) (4 pts) Solve the system $A \mathbf{x}=\mathbf{0}$.
(c) (4 pts) If \mathbf{y} is a solution of $A \mathbf{x}=\mathbf{b}$, find another solution of $A \mathbf{x}=\mathbf{b}$.

Name:

2. (4 pts) If A and B are 2×2 matrices with $\operatorname{det}(A)=3$ and $\operatorname{det}(B)=2$, find $\operatorname{det}\left(2 A^{2}(3 B)^{-1} A^{t}\right)$.
3. (10 pts) Find all values of λ for which the system $\left[\begin{array}{rrr|r}1 & 0 & 2 & 1 \\ \lambda & 2 & 0 & 1 \\ \lambda^{2} & 1 & 0 & \lambda\end{array}\right]$ is consistent.

Name:

4. (6 pts) Write the polynomial $p(x)=x^{3}-2 x^{2}+4 x-7$ as a linear combination of

$$
p_{1}(x)=x^{2}-2 x+2, \quad p_{2}(x)=x^{3}+x^{2}-1, \quad p_{3}(x)=x^{2}-x+2 .
$$

5. (8 pts) Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be linearly independent vectors in \mathbb{R}^{n}, and suppose that A is an invertible $n \times n$ matrix. Define vectors $\mathbf{w}_{i}=A \mathbf{v}_{i}$, for $i=1, \ldots k$. Show that the vectors $\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}$ are linearly independent.

Name:

6. (8 pts) Let A be a 5×5 matrix and let B be the matrix obtained from A by multiplying row 1 by 3 . Prove that $\operatorname{det}(B)=3 \operatorname{det}(A)$.
