Name: _____

Student ID:_____

Instructions:

- 1. This exam has 5 pages. Please make sure you have all pages.
- 2. The point value of each problem occurs to the left of the problem.
- 3. You must show correct work to receive credit. Correct answers with inconsistent work or with no justification will not be given credit.
- 4. Only non-graphing and non-programmable calculators are allowed.
- 5. Turn off and put away all cell phones.

Page	Points	Points Possible			
2		14			
3		14			
4		14			
5		8			
Total		50			

Name: ____

1. Let
$$A = \begin{bmatrix} 4 & 2 & 3 & 1 \\ 1 & 0 & -3 & -1 \\ 6 & 4 & 6 & 2 \\ 8 & 4 & 3 & 1 \end{bmatrix}$$
.

(a) (6 pts) Find the reduced row echelon form of A.

(b) (4 pts) Solve the system $A\mathbf{x} = \mathbf{0}$.

(c) (4 pts) If \mathbf{y} is a solution of $A\mathbf{x} = \mathbf{b}$, find another solution of $A\mathbf{x} = \mathbf{b}$.

Math 218	Quiz 1	Fall 2010		
Name:				

2. (4 pts) If A and B are 2×2 matrices with det(A) = 3 and det(B) = 2, find $det(2A^2(3B)^{-1}A^t)$.

Г	1	0	2	1	
3. (10 pts) Find all values of λ for which the system	λ	2	0	1	is consistent.
	λ^2	1	0	λ	

Name: _

4. (6 pts) Write the polynomial $p(x) = x^3 - 2x^2 + 4x - 7$ as a linear combination of

 $p_1(x) = x^2 - 2x + 2,$ $p_2(x) = x^3 + x^2 - 1,$ $p_3(x) = x^2 - x + 2.$

5. (8 pts) Let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be linearly independent vectors in \mathbb{R}^n , and suppose that A is an invertible $n \times n$ matrix. Define vectors $\mathbf{w}_i = A\mathbf{v}_i$, for $i = 1, \ldots, k$. Show that the vectors $\mathbf{w}_1, \ldots, \mathbf{w}_k$ are linearly independent.

Name: _____

6. (8 pts) Let A be a 5×5 matrix and let B be the matrix obtained from A by multiplying row 1 by 3. Prove that $\det(B) = 3 \det(A)$.