

L E B A N E S E A M E R I C A N U N I V E R S I T Y

Electrical and Computer Engineering Dept
COE 593

COE Application

Fall 2013
W. FAWAZ

Project I

I. Objective

In this project, you are tasked with developing a software tool that uses a weather
feed to display a map showing the cities that are currently experiencing
severe weather conditions.

This somewhat complicated task will be decomposed into three smaller manageable
subtasks to make the process of developing this “Extreme Weather Viewer Tool”
possible.

The proposed implementation strategy is built upon two main pillars, namely the
use of a “divide and conquer”-like approach to solve the problem and the gradual
integration of features into the “extreme weather viewer” software tool.

The details pertaining to the aforementioned three tasks are provided in what
follows.

II. First task

For the first task, your job is to find an XML feed providing meteorological and
climate-related data for cities around the world. Once you have located a proper
content provider to this end, you can proceed to connecting to the identified XML
feed and parse it. The main purpose of the parsing process is to extract information
revealing the location of the cities that are suffering from an extreme weather
condition.

What makes this task very challenging is the fact that you are required to: a) do
some research on your own with a view to finding an appropriate content provider;
b) then, use the information made available by that content provider to categorize
cities into two groups, namely cities with normal weather and ones with severe
weather conditions. This classification can be done based on a variety of factors,
including for instance the temperature level, wind speed, humidity and rainfall levels;
c) and finally, extract information about the location of the cities found to be plagued
with severe weather.

To accomplish this first task, you are required to use the JDOM parser to fetch the
desired information from the retrieved feed. It goes without saying that this can be
achieved only after you study carefully the structure of the XML feed with the
purpose of identifying the tags enclosing the location-related information for each
city. Once you have successfully extracted the information, you would be ready to
tackle the second task whose guidelines are delineated in the following section.

III. Second task

Given that the information produced by the first task represents an address, your
second task would be to use the Google Geocoding API to convert that address
into geographic coordinates (like latitude 37.423021 and longitude-122.083739). The
resulting coordinates will serve as an input for the third task where you will use the
coordinates to add a marker, an icon and the collected meteorological data to a map.

Translating an address to a pair of geographic coordinates involves using the Google
Geocoding API that provides a means for accessing a geocoder as explained at:

https://developers.google.com/maps/documentation/geocoding/

As illustrated in this webpage, a JSON object containing the geographic coordinates
can be requested from the geocoding API. Although it is possible to get an XML
version of the coordinates; for this task, a JSON version of the coordinates should be
requested from the API. Once the JSON-formatted coordinates have been
received your next step would be to extract the latitude and longitude coordinates
contained inside the JSON object. Armed with these two pieces of information, you
will be able to attack the third task of this project.

Given that the first task will result in multiple address values, the process detailed
above should be repeated for each of these addresses.

IV. Third task

At this stage, you are assumed to have completed the second task correctly. This is
particularly true since the third task will make heavy use of the latitude and
longitude information generated by the second task. Your task at this point is to
integrate into your Java application a map with a set of markers showing the
locations associated with the latitude and longitude coordinates resulting from
the second task. For illustration purposes, I am enclosing on the next page a map
view displaying a yellow marker that points to the city of Jounieh, Lebanon.

You have to produce a similar view but with several markers pinpointing the
positions of the cities with severe weather conditions on the map. In addition to the
markers, you are required to add image icons capturing the reported weather
condition. For example, an icon showing the sun should be placed next to a city
experiencing extremely hot weather conditions, one with clouds and rain should be
used to label a city suffering from an extremely cold rainy weather condition, and so
on and so forth. Both the marker and the icon should be supplemented with a
summary list presenting the meteorological data characterizing the weather
condition of each one of the cities identified earlier. More specifically, for each city
the summary list should report information relating to the temperature level, wind
speed, humidity and rainfall levels.

To add a map to your java application, you can use the JMapViewer java
component. The following URL: http://wiki.openstreetmap.org/wiki/JMapViewer is a
good source of information in this regard. The external library (.jar file) that
contains the JMapViewer java class can be downloaded from:

http://svn.openstreetmap.org/applications/viewer/jmapviewer/releases/2011-02-
19/JMapViewer.zip

Moreover, the HTML documentation for the JMapViewer class and other relevant
classes can be found at: http://josm.openstreetmap.de/doc/. This URL is very
important as it will allow you to gain a deeper understanding of both the JMapViewer
class and the other classes that might be needed to accomplish the third task.

Finally, to complete the third task, add an event handler to your application to allow
for a periodic refreshing of the extreme weather view. In this way, the map can be
updated at regular time intervals with meteorological information pertaining to the
newly spotted extreme-weather cities, i.e., the ones that were not identified by the
last update of the map view. As you might expect, this final step requires that a
Timer object be created and incorporated into your application.

What to turn in?

This project is due at the beginning of class on the due date. You have to turn in the
following material in both hard and soft copies.

Criteria Percentage
Documentation of your solution including explanations and
illustrations in one or two pages along with short write-up of
questions and/or problems that you encountered while doing this
assignment.

2 pts (10%)

Source code that contains an appropriate amount of comments.
Well-organized and correct code receives 16 pts, messy yet working
code receives 10 pts, code with bugs receives 2 pts, and incomplete
code receives 1 pt.

16 pts (80 %)

Execution output such as a snapshot of the contents of standard
output. A correct output receives 2 pts, the one with minor errors
receives 1 pt, and an incomplete output receives 0 pts.

2 pts (10%)

Total 20 pts (100%)

Good Luck!

