Name: \qquad
Student ID:

Instructions:

1. You must show correct work to receive credit. Correct answers with inconsistent work will not be given credit.
2. Books and notes are not allowed.
3. You may use a simple calculator.
4. Turn off and put away all cell phones.

Page	Points	Points Possible
2		12
3		14
4		11
5		13
Total		50

Name: \qquad

1. The augmented matrix of a linear system is $A=\left[\begin{array}{lll|l}2 & 2 & -2 & a \\ 3 & 2 & -2 & b \\ 2 & 1 & -1 & c\end{array}\right]$.
(a) (8 pts) Determine the values of a, b, c for which the system is consistent.
(b) (4 pts) If $a=4, b=1$ and $c=-1$, how many solutions does the system have?

Name:
2. (6 pts) If A is a 4×4 matrix with $\operatorname{det}(A)=3$, find $\operatorname{det}\left(4 A^{3} A^{t}(2 A)^{-1}\right)$.
3. (8 pts) Let $A=\left[\begin{array}{rrr}2 & 6 & 2 \\ 3 & 5 & 1 \\ -1 & 3 & 2 \\ 2 & 2 & 0\end{array}\right]$. Prove or disprove: The linear system $A \mathbf{x}=\mathbf{b}$ has a unique solution for every vector \mathbf{b} in \mathbb{R}^{4}.

Name:
4. (3 pts) Prove or disprove: If \mathbf{v} is any vector in a vector space V then $\{\mathbf{v}\}$ is linearly independent.
5. (8 pts) For which values of a is the set $S=\left\{a x^{3}, x^{3}+(2 a-1) x^{2}, a^{2} x^{2}+(a-4) x\right\}$ linearly independent?

Name:

6. (5 pts) Let A and B be two $n \times n$ matrices with $\operatorname{det}(A)=\operatorname{det}(B) \neq 0$. Find a matrix C such that $\operatorname{det}(C)=1$ and $A=C B$.
7. (8 pts) Let V and W be subspaces of the Euclidean space \mathbb{R}^{5}. Determine whether the set $S=\{\mathbf{v}-\mathbf{w} \mid \mathbf{v} \in V, \mathbf{w} \in W\}$ is a subspace of \mathbb{R}^{5}.
