

Name:	
Date:	Tuesday 1 st of April 2008;
Time:	12:30 → 13:45
Location:	ENG ATTIC
Instructor:	Dr. Ramy HARIK
Notes:	Closed Book
Location: Instructor:	ENG ATTIC Dr. Ramy HARIK

EXERCICE 1 (18 POINTS)

Round the option that is the most correct, each correct answer values 3 pts & each wrong one values -1 pt.

- 1. Magnesium production uses _____ as the 'ore'.
 - a. Coke & Limestone

b. Seawater

- c. Under-ground mines
- 2. Non Ferrous materials have better corrosion resistance, better strength then Ferrous Materials but are more expensive.
 - a. True b. False
 - c. None of the above
- 3. Tensile strength is a material property that:
 - a. Expresses the highest compressional stress the element can endure.
 - b. Expresses the ductility of a material.
 - c. None of the above
- 4. Sand molds are used to make _____ product (s).
 - b. 10452
 - c. None of the above
- 5. A pattern is:
 - a. Made of wood.
 - b. Made of ferrous material.
 - c. All of the above.
- 6. Lost Wax Casting requires heating the mold so it looses the wax-made pattern.
 - a. True
 - b. False
 - c. Not necessarily

EXERCICE 2 (12 POINTS)

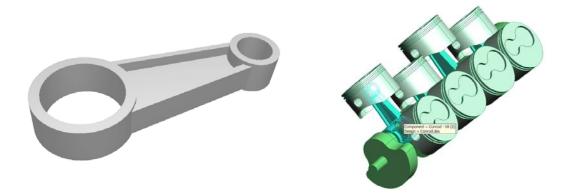
Explain the process of obtaining steel out of iron ores: Name the main phases & explain them briefly. *Do not surpass this page. Drawings are encouraged.*

Iron Ores \rightarrow Process 1: BLAST FURNANCE \rightarrow Pig Iron [3 pts] [3 pts]: Explanations

Pig Iron \rightarrow Process 2: BASIC OXYGEN FURNACE \rightarrow Steel [3 pts] [3 pts]: Explanations

EXERCICE 3 (70 POINTS)

This exercise requires engineering logic and application of concepts mentioned in class. Do not try to explain things more then it requires; keep your answer simple and clear.


DRAWINGS: Should be colorful & clear.

Case Study: Casting of a Connecting Rod

The production of a connecting rod can be made in Casting, Material Removal and recently Chrysler & ford made connecting rods using Powder Metallurgy.

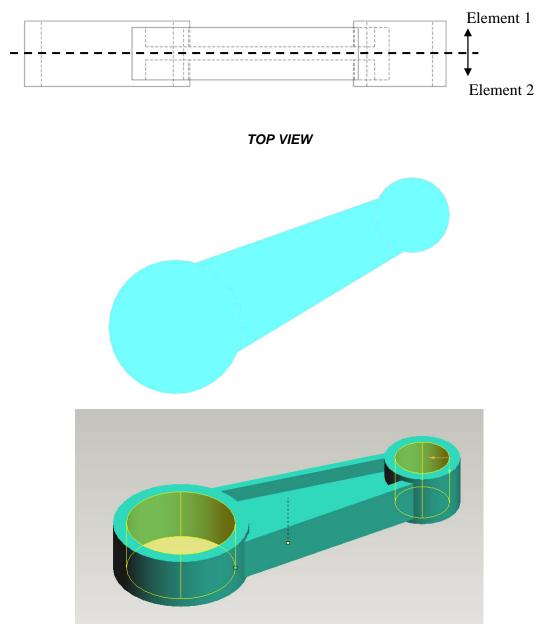
In our exercise we are trying to **<u>sand-cast</u>** a connecting rod with a **<u>removable pattern</u>**.

The 3D drawing of the Connecting Rod is given on the left; the position of a connecting rod within the engine is given on the right.

This is the side view (with internal lines):

!	1	
1		
		i i i
i		
	1 1 1	
		ilii
	i	Li i

You do not need to reproduce the internal lines on your drawings, it is for your understanding of the part (for pattern construction).


1. Propose a removable Pattern. Identify its material, loose pieces, parts. Draw & Explain. (10 points)

Pattern optimal material: Aluminum

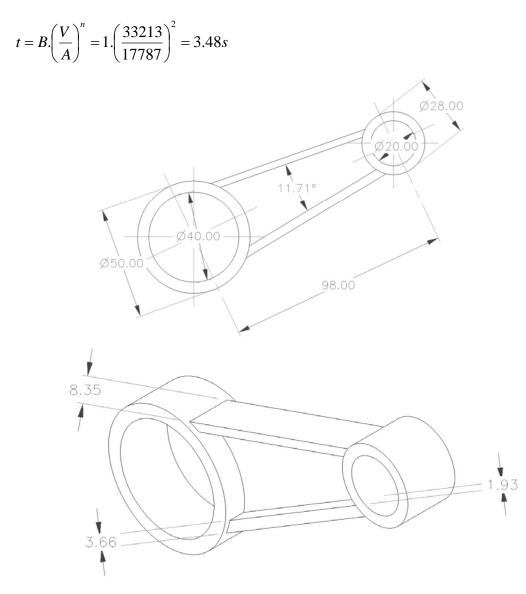
[A Connecting Rod is mass produced; a wooden pattern would not withstand the mass production]

Pattern Loose pieces: No Loose pieces are required for the selected pattern.

Pattern optimal material:

We have filled the empty areas with material (to be replaced by cores later)

2. Enhance your pattern by including allowances. Draw & Discuss. (10 points)


Shrinkage, draft, finishing

3. Enhance your pattern by including a core. Draw & Explain. (10 points) *Check figure in yellow section 1*

4. Explain the molding procedure to obtain the product and design your mold (with all of the details).
(20 points)
COPE / DRAG / GATES / RISERS / SPRUE / POURIN BASIN / VENTS

5. Calculate the solidification time using Chvorinov's rule (15 points)

Use n = 2.0, B= 1 s/mm^2

6. Show areas in your mold where gas bubbles might be present by hand drawing. (5 points)

Good Luck! Dr. HARIK