LEBANESE AMERICAN UNIVERSITY
Electrical and Computer Engineering Dept
COE 755
Queueing Theory
Spring 2013
W. FAWAZ

Exam Preparation Problems

I. Markov Chains and Processes

Problem I

The probability of rain tomorrow is 0.8 if it is raining today, and the probability it is clear tomorrow is 0.9 if it is clear today.

- Construct the one-step transition matrix

0.1

For the Markov chain in the Figure above, we know that the one-step transition matrix is:
$P=\left(\begin{array}{ll}0.8 & 0.2 \\ 0.1 & 0.9\end{array}\right)$

- Find the steady state probabilities.
$n_{1}=1 / 3$ and $n_{2}=2 / 3$.

Problem II

Consider the following gambler's ruin problem. A gambler bets one unit on each play of a game. He has a probability $p=0.5$ of winning and $1-p$ of losing. He continues to play until he goes broke (state 0) or nets a fortune of 3 units (state 3). (the states 0 and 3 are called absorbing states, since the Markov process terminates when it enters one of these two states) Let X_{n} be the gambler's fortune at the $\mathrm{n}^{\text {th }}$ play.

- Setup the one-step transition matrix (remember that the system does not exit from states 0 or 3)
$P=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 1-p & 0 & p & 0 \\ 0 & 1-p & 0 & p \\ 0 & 0 & 0 & 1\end{array}\right)$
- Given that the gambler has 1 unit at time 0 , what would be his fortune one step later? In other words, find X_{1}
$X_{1}=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right] * P=\left[\begin{array}{lll}0.5 & 0 & 0.5\end{array}\right]=>$ fortune one step later $=1$.

II. Markovian queues

Problem I

A PBX system was installed to handle the voice traffic generated by 300 employees in a factory. If each employee, on the average, makes 1.5 calls per hour with average call duration of 2.5 minutes, what is the offered load presented to this PBX?

Offered load $=$ Arrival rate x service rate $=300 \times 1.5 \times 2.5 / 60=18.75$ Erlangs.

Problem II

Variable length data packets arrive at a communication node according to a Poisson process at an average rate of 180 packets per minute. The single outgoing communication link is operating at a transmission rate of 4800 bits per second. The packet lengths can be assumed to be exponentially distributed with an average length of 960 bits.

Calculate the principal performance measures ($\mathrm{L}, \mathrm{L}_{\mathrm{q}}, \mathrm{W}$, and W_{q}) of this communication link assuming that it has a very large input buffer.

The average service time $=0.2$ s. and the arrival rate $\lambda=180$ packets/min $=3$ packets $/$ sec thus $\rho=3 \times 0.2=0.6$
The parameters of interest can be calculated easily as follows
$L=\rho /(1-\rho)=3 / 2$ packets and $L_{q}=\rho^{2} /(1-\rho)=9 / 10$ packets
$W=1 / \mu-\lambda=1 / 2$ seconds and $W_{q}=3 / 10$ seconds

