AMERICAN UNIVERSITY OF BEIRUT
 Mathematics Department
 Math 218 - Final Exam
 Fall 2005-2006

Name:
ID:

Section 1
Section 2
Mrs. Z. Mouzeihem
Ms. M. Houri
Section 3
Ms. D. Audi

I- (35 points) Let

$$
A=\left(\begin{array}{llll}
1 & 2 & 1 & 1 \\
3 & 7 & 2 & 2 \\
2 & 4 & 2 & 2
\end{array}\right)
$$

(a) Find a basis for the row space of A.
(b) Find a basis for the column space of A.
(c) Find a basis for the null space of A.
(d) Find a basis for the null space of A^{T}.
(e) If W^{\perp} is the column space of A deduce a basis for W.

II- (25 points) Let $T: P_{2} \rightarrow P_{2}$ be a linear transformation such that:

$$
T(p(x))=p(2 x+3)
$$

a) Find the matrix $A=[T]_{B}$ with respect to the standard basis $B=\left\{1, x, x^{2}\right\}$.
b) Find the eigenvalues for the matrix $A=[T]_{B}$
c) Write the formula for $[T(p(x))]_{B}$ without justification.
d) Deduce the values of λ such that $T(p(x))=\lambda p(x)$ has nonzero solutions.

III- (20 points) Let $S=\left\{u_{1}, u_{2}, u_{3}\right\}$ be a basis for \mathbf{R}^{3}, with $u_{1}=(2,2,0)$, $u_{2}=(2,0,0)$ and $u_{3}=(0,0,3)$
a) Find an orthonormal basis $S_{1}=\left\{q_{1}, q_{2}, q_{3}\right\}$ for \mathbf{R}^{3}.
b) Write $u=(1,1,1)$ in terms of the basis S_{1}.

IV- ($\mathbf{2 0}$ points) Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{4}$ be defined by:

$$
T(x, y, z)=(x+2 y, x+3 z, z-x, 0)
$$

a) Show that T is a linear transformation.
b) Is T one-to-one? Justify
c) Find the rank of T.
d) Find a basis for the range of T.

V- ($\mathbf{2 5}$ points) Let A be a 3×3 matrix with eigenvalues $\lambda_{1}=-2, \lambda_{2}=0$ and $\lambda_{3}=4$, and let v_{1}, v_{2} and v_{3} be the corresponding eigenvectors respectively, where $v_{1}=(0,3,-2), v_{2}=(-3,-3,0)$ and $v_{3}=(-2,0,3)$.
Let $E_{1}=\operatorname{span}\left\{v_{1}\right\}$ be the eigenspace corresponding to $\lambda_{1}=-2$, $E_{2}=\operatorname{span}\left\{v_{2}\right\}$ the eigenspace corresponding to $\lambda_{2}=0$ and $E_{3}=\operatorname{span}\left\{v_{3}\right\}$ the eigenspace corresponding to $\lambda_{3}=4$.
a) Write $x=(-10,-3,4)$ as a linear combination of the vectors $\left\{v_{1}, v_{2}, v_{3}\right\}$, and deduce $A x$.
b) Find the null space of A (Hint: Use the fact that $\lambda=0$ is an eigenvalue for A.)
c) Find a matrix P that diagonalizes A and determine $P^{-1} A P$

VI- (15 points) Short Proofs

1) Show that if A is an orthogonal matrix then $\operatorname{det}(A)= \pm 1$.
2) State and prove the theorem of Pythagoras for an inner product space V.
3) Let $T: V \rightarrow W$ be a linear transformation, show that $\operatorname{Ker}(T)$ is a subspace of V.

VII- (30 points) Show your work.
a) Let A, B and C be $n \times n$ matrices, if $B=A^{-1}$ and $C=B^{T}$ find C^{-1}.
b) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be a linear operator with $T(1,1)=(2,1)$ and $T(3,2)=(0,3)$, find $T(5,4)$.
c) Let $A=\left(\begin{array}{lll}1 & 0 & 3 \\ 2 & 5 & 2 \\ 1 & 0 & 8\end{array}\right)$ and $C=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 2 & 0\end{array}\right)$. If B is a 3×3 matrix and $A B=C$ find $\operatorname{det}(B)$.
d) Let $A=\left(\begin{array}{cc}4 & 1 \\ d & -4\end{array}\right)$, find the value of d that makes A orthogonally diagonalizable.
e) Find the null space of a 5×4 matrix with linearly independent columns.
f) Let $\{u, v, w\}$ be a basis for a vector space V. Show that $\{w, u+w, u+v+w\}$ are linearly independent.

VII- (30 points) Answer TRUE or FALSE without proof (5 points for each right answer and 2 points penalty for each wrong answer).
a- Let A be an $n \times n$ matrix, if $\lambda=0$ is an eigenvalue for A then A is invertible.
b- Let $T: P_{n} \rightarrow P_{n}$ be a linear transformation, if range of T is P_{n} then T is one-to one.
c- Let A, B and C be $n \times n$ matrices, if $A B=A C$ then $B=C$.
d- Let A be an $m \times n$ matrix and b be an $m \times 1$ vector, if b is not in the column space of A then $A X=b$ has no solution.
e- Let $T: V \rightarrow \mathbf{R}$ be a linear transformation with $V=\operatorname{span}\{u\}$. If $T(u)=0$ then $T \equiv 0$.
f- Cramer's rule can be used to solve any system of linear equations.
GOOD LUCK!!

