AMERICAN UNIVERSITY OF BEIRUT

Mathematics Department
Math 218 - Final Exam
Fall 2007-2008

Name:
ID:
Section: 4 (@ 12:30) 5 (@ 9:30)
Time: 120 min
I- Given the vector space \mathbb{R}^{4} with standard addition and scalar multiplication.
Let $W=\left\{x \in \mathbb{R}^{4}\right.$ such that $\left.A x=0\right\}$ where $A=\left[\begin{array}{cccc}3 & 6 & 0 & 0 \\ 3 & 7 & 0 & -15 \\ 2 & 4 & 0 & 0\end{array}\right]$.
(a) (i) (4 points) Show that W is a subspace of \mathbb{R}^{4}.
(ii) (5 points) Find a basis for W.
(iii) (1 point) Determine the dimension of W.
(b) (6 points) Find a basis for W^{\perp}, the orthogonal complement of W, with respect to the Euclidean inner product.

II- Given $A=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 2 & 5 & 6 & 7 \\ 3 & 0 & 8 & 9 \\ 4 & 0 & 0 & 10\end{array}\right]$
(a) (3 points) Find the eigenvalues of A.
(b) (8 points) Find bases for each of the eigenspaces of A.

Continue ...
(c) (2 points) Explain, without any calculation, whether the column vectors of A are a basis for \mathbb{R}^{4}.
(d) (1 point) Give without justification a matrix P such that $P^{-1} A P$ is a diagonal matrix. (That is P diagonalizes A)
(e) (2 points) If A is the standard matrix representing a linear transformation T and we take M_{44} with the inner product $<A, B>=\operatorname{tr}\left(A^{T} B\right)$. Is the function f defined by $f(x)=\|A\| T(x)$ a linear transformation? Justify.

III- (5 points) Choose one of the following statements and prove it.

- Given an $m \times n$ matrix A, if $A x=b$ is consistent for all b then the column vectors of A span \mathbb{R}^{m}.
- If a set of nonzero vectors in an inner product space V is orthogonal then it is linearly independent.

IV- (a) (8 points) Find a least squares solution for the system:

$$
\left\{\begin{array}{lll}
x & -z=6 \\
2 x & +y & -2 z=27 \\
3 x+3 y & =0 \\
x & +y & -z=3
\end{array}\right.
$$

(b) (4 points) Use part (a) to find $\operatorname{Proj}_{W} b$ where

$$
b=\left[\begin{array}{c}
6 \\
27 \\
0 \\
3
\end{array}\right] \text { and } W=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
-2 \\
0 \\
-1
\end{array}\right]\right\}
$$

V- (3 points for each part) Give a short answer.
1- The nullity of $A=\left[\begin{array}{ccccc}3 & 0 & 1 & 2 & 5 \\ 0 & 1 & 5 & 2 & -1 \\ 3 & 0 & 5 & -6 & 4\end{array}\right]$ is:

2- The vector space of all diagonal $n \times n$ matrices has dimension:

3- If $T_{1}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ and $T_{2}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ where
$T_{1}\left(e_{1}\right)=(1,2)$
$T_{1}\left(2 e_{2}\right)=(0,6)$
$T_{2}\left(e_{1}\right)=T_{1}\left(e_{1}+e_{2}\right)$
$T_{2}\left(e_{2}\right)=-3 T_{1}\left(2 e_{1}\right)$
then $T_{1} \circ T_{2}(2,-1)$ is:

4- If $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is the projection on the x -axis then the standard matrix representing T is:

5- An orthogonal basis for the space spanned by $u_{1}=(1,0,3,2)$ and $u_{2}=(-2,1,0,3)$ with respect to the Euclidean inner product is:

VI- (3 points for each part) Use the given to detect the unknown. Justify.
1- A is a matrix where the number of columns is twice the number of rows. The system $A x=b$ is consistent for all b. The column vectors of A span a subspace of \mathbb{R}^{6}.
What is $\operatorname{rank}(A)$?

2- A is an $n \times n$ matrix with row vectors $r_{1}, r_{2}, \ldots, r_{n}$ and column vectors $c_{1}, c_{2}, \ldots, c_{n}$. The set $\left\{r_{1}, r_{2}, \ldots, r_{n}, c_{1}, c_{2}, \ldots, c_{n}\right\}$ is linearly independent. What is ColumnSpace ${ }_{A}$?

3- S is a set of matrices all of which represent linear transformations from \mathbb{R}^{3} to \mathbb{R}^{3}. All linearly independent subsets of S with 8 elements will not span S.
What is S ?

VII- (2 points for each part) Answer TRUE or FALSE. DO NOT JUSTIFY YOUR ANSWER. Ambiguous answers will not be counted.

1- The span of a set of 6 nonzero vectors in any vector space V has infinitely many elements.

2- $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ defined by $T(x, y, z)=(3 x+y, z-3)$ is a linear transformation.

3- If V is any inner product space and u and v are any two orthogonal elements of V then $\|u\|^{2}+\|v\|^{2}=\|u+v\|^{2}$.

4- The function $f(x)=m x+b$ is a linear transformation from \mathbb{R} to \mathbb{R} for any two scalars m and b.

5- Given any inner product space V and any two elements u and v of V we have $-\|u\|\|v\| \leqslant<u, v>\leqslant\|u\|\|v\|$.

6- If $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a linear transformation and $m=n$ then T is one-to-one.

7- If k is a scalar and u is an element of a vector space V where $k u=0$ then either $k=0$ or $u=0$, BUT we can have two nonzero matrices A and B where $A B=0$.

8- $\left[\begin{array}{ccc}5 & 4 & 5 \\ 7 & -5 & 9\end{array}\right]$ is a linear combination of $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 0 & 6\end{array}\right],\left[\begin{array}{ccc}2 & -1 & 0 \\ 0 & 5 & -3\end{array}\right]$, and $\left[\begin{array}{lll}6 & 1 & 2 \\ 3 & 0 & 0\end{array}\right]$

9- The set of all 2×2 matrices A with $\operatorname{det}(A)=0$ is a subspace of M_{22}.

10- If S_{1} and S_{2} are two subsets of a vector space V and $\operatorname{Span}\left(S_{1}\right)=\operatorname{Span}\left(S_{2}\right)$ then $S_{1}=S_{2}$.

11- Any subset of a linearly independent set is linearly independent.

12- If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for a vector space V, then $\left\{3 v_{1}, 5 v_{2},-v_{3},-v_{4}\right\}$ is also a basis for V.

13- An upper triangular matrix of size 5×5 has exactly 5 distinct eigenvalues.

14- For any $m \times n$ matrix A, the associated normal system is either $A^{T} A x=A^{T} b$ or $A A^{T} x=A^{T} b$ since $A^{T} A$ is always symmetric for any A.

