

1 Answer by true or false: Every subset of a linearly independent set is a linearly independent set.

The vectors (1, 0, 1), (1, 1, 0), (3, 2, 0) form a basis for \mathbb{R}^3 .

The column vectors of a 7×4 matrix must be linearly dependent.

If span(S) = span(T), then, S = T.

_If {a, b, c} is a linearly independent set of nonzero vectors, then, each is a linear combination of the others.

If u, v are vectors of a inner product space, then, ||u|| = ||v|| if and only if u - v is orthogonal to u + v.

- 2 If we modify the scalar multiplication in \mathbb{R}^2 by setting k(x,y) = (2kx, 2ky), does \mathbb{R}^2 remain a vector space?
- 3 Is $W = \{ (x, y, z) \in \mathbb{R}^3, y = x + z + 1 \}$ a sub-vector space of \mathbb{R}^3 ?
- 4 Prove or disprove that x = (3, 1, 5) is a linear combination of u = (0, -2, 2) and v = (1, 3, -1).
- 5 Does the solution set of the linear system x+y+z=0, x-2y+z=1 form a sub-vector space of \mathbb{R}^3 ?
- 6 Determine whether the vectors u = (2, -1, 3), v = (4, 1, 2), w = (0, 3, -4) form a basis for \mathbb{R}^3 .
- 7 Are the vectors a = (0, 0, 1, 2), b = (5, 1, 2, 0), and c = (1, 0, 0, 3) linearly independent in \mathbb{R}^4 ?
- 8 Find the coordinate vector of $\begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix}$ relative to the basis $A_1 = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}$, $A_2 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $A_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $A_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.
- 9 Find a basis for the nullspace of A, and the rank of A, where $A = \begin{bmatrix} 2 & 0 & -1 \\ 4 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix}$.
- 10 Compute $\langle u, v \rangle$, where $\langle v \rangle$ denotes the inner product on \mathbb{R}^3 generated by the matrix $A = \begin{bmatrix} 3 & 2 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & 5 \end{bmatrix}$.
- 11 Consider the weighted inner product on \mathbb{R}^2 defined by $\langle u, v \rangle = 3.u_1v_1 + 5.u_2v_2$.
 - •Find the norm of u = (-8, 15). •Find the distance between u and v = (17, -3).
 - •Find the cosine of the angle between u and v.

- 12 Let T be the linear transformation: $\mathbb{R}^4 \to \mathbb{R}^3$ defined by T(x, y, z, t) = (40x 20z + 5t, x + y + z + t, 6t). Find a basis for the Kernel of T. Subsidiary question: Is it possible to modify the numerical values above in order to obtain rank(T) = 4?
- 13 Let n be a positive integer, and let $A = \begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$. Find A^n .
- 14 Let t denote a real parameter. Consider the 3×3 matrix $A = \begin{bmatrix} t/3 & 2t/3 & 2t/3 \\ 2t/3 & -2t/3 & t/3 \\ -2t/3 & -t/3 & 2t/3 \end{bmatrix}$. Find all the values of t

for which matrix A is orthogonal.(a complete proof is needed).

- 15 Prove or disprove: We can find a 1×3 matrix M such that, for infinitely many 3×1 vectors v, Mv is a prime number.
- 16 Let p and q be real numbers and suppose that the equation $x^3 + p \cdot x^2 + x + q = 0$ has at least one real zero ε . Prove the existence of a 4×4 matrix A satisfying $A^3 + A = p \cdot A^2 + q \cdot I_A$.
- 17 The following property is well-known: If A is a $m \times n$ matrix with rank n, then, $A^T A$ is invertible. Does the result remain true if we allow complex entries?

(10+4+4+4+4+5+5+5+7+4+9+8+9+10+4+4+4)