

- 1. (24%) Prove (concisely) or disprove (by a counter example) in an inner product space.
 - (a) $4(u, v) = ||u + v||^2$ $||u v||^2$
 - (b) If $||u + v||^2 = 4(u, v)$, then u = v.
 - (c) Non-zero orthogonal vectors are linearly independent.
 - (d) If two $m \times n$ matrices have the same null space, then they have the same row space.
 - (e) If two $m \times n$ matrices have the same null space, then they have the same column space.
 - (f) (For any square matrix A), A and A^{I} have the same null space.
- **2.** (10%) (a) What do we mean precisely by a least square solution of a non-consistent system AX = b? **AND** (ii) how do we find them?
- (b) What do we know about symmetric $n \times n$ matrices regarding eigenvalues & diagonalization?
- (c) Apply the Cauchy-Schwarz inequality on functions in C[a, b] & vectors in R^n .
- 3. (15%) Let $A = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$
 - (i) Find the eigen values of A and a basis for each eigen space of A.
 - (ii) Show that A is diagonalizable and find the exact relation between A and its diagonalization D. (Yes. calculate P^{-1}).
- 4. (6 %) Let T: V→W be a linear transformation of vector spaces. If T(a₁), T(a₂), ..., T(a_n) are linearly independent. show that {a₁, a₂, ..., a_n } are linearly independent.
- 5. (6%) Let T: V →W be a linear transformation of vector spaces. If T is 1-1 and dimV=dimW=n, show that T is onto. (Hint: You may use the rank-nullity theorem.
- **6.** (7%) Let $\{w_1, w_2, ..., w_n : a_1, a_2, ..., a_t\}$ be an oin basis of an inner product space V. Let W_1 span $\{w_1, w_2, ..., w_n\}$ and let A=span $\{a_1, a_2, ..., a_t\}$.

Show that $|W|^{\perp} = A$. Then deduce that $|V| = W \oplus W^{\perp}$.

7. (6%) If \(a, b, c \) is a basis of a vector space V, show that \(\{ a+b, a+2b, b+c \} \) is also a basis of V.

8. (15%) Let
$$A = \begin{bmatrix} 1 & 2 & 1 & 3 & 6 \\ 2 & 4 & 0 & 2 & 2 \\ 0 & 0 & 1 & 2 & 5 \end{bmatrix}$$

- (i) Show that rank A=2
- (ii) Prove or disprove that the first 2 rows of A form a basis for the row space of A.
- (iii) Does the system AX = B have a solution for every B in R^3 ? Justify.
- 9. (6%) Suppose dimV=dimA+dimB and $A \cap B = 0$ where A and B are subspaces of V. Show that V=A+B.
- 10. (5%) For any rectangular matrix A, show that A^{t} and $A^{t}A$ have the same column space.

