Not TO ROBBING DESIGNATION OF THE PROPERTY OF

Name:....

AMERICAN UNIVERSITY OF BEIRUT

Mathematics Department Math 218 - Quiz I Fall 2005-2006

ID:....

Section 1 Mrs. Z. Mo	uzeihem	Section 2 Ms. M. Houri	Section 3 Ms. D. Audi
			Time: 60 min
$\begin{cases} x \\ x + y \\ x + r \end{cases}$ i- no s	hts) For what value $+mz=0$ $=1$ $my-2z=-1$ olutions.		ng system have: / 6
\	ique solution. M		
0 m $= -1$ $(+2)$ $(-1, 2)$	m -m -2-m infinit	cely many sof.	0 M 0 M 0 M 1 M 2 M 1 M 2 M

$$A = \left(\begin{array}{ccc} 1 & 2 & 0 \\ 2 & 2 & 4 \\ 1 & 2 & 1 \end{array}\right)$$

a- (10 points) Find the inverse of the matrix A.

$$\begin{pmatrix}
1 & 2 & 0 & | & 0 & 0 & 0 \\
2 & 2 & 4 & | & 0 & | & 0 & 0 \\
1 & 2 & | & | & | & | & | & | & | & |
\\
R_{1}-R_{1} & 0 & | & | & | & | & | & | & |
\\
R_{2}-R_{1} & | & | & | & | & | & | & |
\\
R_{3}-R_{1} & | & | & | & | & | & |
\\
0 & | & | & | & | & | & |
\\
0 & | & | & | & | & | & |
\\
0 & | & | & | & | & |
\\
0 & | & | & | & | & |
\\
0 & | & | & | & | & |
\\
0 & | & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 & | & | & |
\\
0 &$$

b- (5 points) Use part (a) to solve the following system

$$\begin{cases} x + 2y = 2 \\ 2x + 2y + 4z = -1 \\ x + 2y + z = 2 \end{cases}$$

$$X = A^{-1}b = \begin{bmatrix} 3 & 1 & -4 \\ -1 & -\frac{1}{2} & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$=\begin{bmatrix} -3 \\ \frac{5}{2} \\ 0 \end{bmatrix}$$

III- a- (5 points) Let A be a square matrix such that $A^3 + 4AA^T - 2A - 7I = 0$. Show that A is invertible and find A^{-1} .

$$A (A^{2} + 4A^{T} - 2I) = 7I$$

$$A (\frac{1}{7}(A^{2} + 4A^{T} - 2I) = I$$

$$A^{-1} = \frac{1}{7}(A^{2} + 4A^{T} - 2I)$$

b- (5 points) Let A, B and C be square matrices of the same size such that $B = A^{-1}CA$. Show that $B^2 = A^{-1}C^2A$ and deduce B^n .

$$B = A^{-1}CA$$

$$B^{2} = A^{-1}CAA^{-1}CA$$

$$= A^{-1}C^{2}A$$

$$= A^{-1}C^{1}A$$

$$B^{2} = A^{-1}C^{1}A$$

IV- (10 points) Find the values of k for which the matrix is not invertible.

V- Let
$$A = \begin{pmatrix} 1 & 0 & 3 \\ 1 & 1 & 1 \\ 3 & 5 & 2 \end{pmatrix}$$
.

a- (10 points) Find det(A)

$$= -3 + 3(2) = 3$$

b- (20 points) Find the following

i-
$$det(A^4)$$

$$\frac{3}{\text{ii- det}((2A)^{-3})} = \frac{1}{8^3} \frac{1}{141^3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}$$

iii-
$$\det(A^T A^{-1}) = |A| \cdot |A| = 3 \quad \frac{1}{3} = 1$$

iv-
$$\det(\operatorname{adj}(A)) = \bigvee_{i=1}^{N}$$

$$|adj(A)| = \frac{3^3}{111} = 3^9$$

iv-
$$\det(\operatorname{adj}(A)) = \frac{1}{1} \left[\frac{1}{1} \left(\frac{1}{1} \right) \right] = \frac{3^3}{141} = \frac{3^2}{141} =$$

- VI- a- (10 points) Answer TRUE or FALSE without proof.
 - i- $(\det(A))^2 = \det(A^2)$
 - ii- If det(A) = 0 the system AX = b has infinitely many solutions.
 - iii- Let A and B be two matrices of the same size, if AB is invertible then A and B are both invertible.
 - iv- If A is invertible then the system AX = 2X has exactly one solution.
 - v- $\operatorname{tr}(A^T) = \operatorname{tr}(A)$
 - b- (5 points) Justify your answer if TRUE or give a counter example if FALSE for part (iii) ONLY.

1ABIE 1A1. 1B1 #0