
Chapter 2- 2020 Summer



A Set-theory Recap
Let A,B be two subsets of a set Ω

Union
A ∪ B = {ω ∈ Ω : ω ∈ A orω ∈ B}

Intersection

A ∩ B ≡ AB = {ω ∈ Ω : ω ∈ A andω ∈ B}

Complement

Ā ≡ Ac = {ω ∈ Ω : ω /∈ A} = Ω \ A

Difference

B \ A = B ∩ Ā = {ω ∈ Ω : ω ∈ B andω /∈ A}

Notation
When A is a countable set, we denote with |A| the number of
points/elements in A (the size or cardinality of A)



A Set-theory Recap
Properties

Commutativity

A ∪ B = B ∪ A, A ∩ B = B ∩ A

Associativity

(A ∪ B) ∪ C = A ∪ (B ∪ C ), (A ∩ B) ∩ C = A ∩ (B ∩ C )

Distributivity

A∩(B∪C ) = (A∩B)∪(A∩C ), A∪(B∩C ) = (A∪B)∩(A∪C )

Idempotency
A ∪ A = A, A ∩ A = A

De Morgan’s laws

A ∪ B = Ā ∩ B̄, A ∩ B = Ā ∪ B̄

n⋃
i=1

Ai =
n⋂

i=1

Āi ,

n⋂
i=1

Ai =
n⋃

i=1

Āi



A Set-theory Recap. Poincaré Identities

Inclusion-Exclusion Principle (Poincaré Identity)

Let Ai ⊂ Ω, i = 1, . . . , n

|
n⋃

i=1

Ai | = |A1 ∪ A2 ∪ . . . ∪ An| =

n∑
i=1

|Ai | −
∑

1≤i<j≤n
|Ai ∩ Aj |

+
∑

1≤i<j<k≤n
|Ai ∩ Aj ∩ Ak |

− . . .+ (−1)n−1|A1 ∩ A2 ∩ . . .An|

For example, for n = 3

|A∪B∪C | = |A|+|B|+|C |−|A∩B|−|A∩C |−|B∩C |+|A∩B∩C |



A Set-theory Recap. Poincaré Identities

Using the De Morgan’s law, it then follows

|
n⋂

i=1

Āi | = |Ω \
n⋃

i=1

Ai |

= |Ω| − |
n⋃

i=1

Ai | sinceΩ ⊇
n⋃

i=1

Ai

= |Ω| −
n∑

i=1

|Ai |+
∑

1≤i<j≤n
|Ai ∩ Aj |

−
∑

1≤i<j<k≤n
|Ai ∩ Aj ∩ Ak |

+ . . .+ (−1)n−1|A1 ∩ A2 ∩ . . .An|



An Example

In a group of 21 (Arabic-speaking) Lebanese, 16 speak French, 13
English, 4 Armenian, 9 English and French, 2 French and
Armenian, 3 English and Armenian and 1 English, French and
Armenian. How many speak only Arabic?

Let A be the set of Armenophones, E the set of Anglophones, F
the set of Francophones
The set of those who speak only Arabic is

Ā ∩ Ē ∩ F̄ = A ∪ E ∪ F = Ω \ (A ∪ E ∪ F )

|Ā ∩ Ē ∩ F̄ | = |Ω| − |A ∪ E ∪ F |
= |Ω| − (|A|+ |E |+ |F |) + |A ∩ E |+ |A ∩ F |+ |E ∩ F |

−|A ∩ E ∩ F |
= 21− (4 + 13 + 16) + 3 + 2 + 9− 1 = 1
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Sample Space and Events
The sample space Ω (or S) associated with an experiment is the
set of all possible outcomes of such an experiment

Ω = {ω1, . . . , ωn}

A subset E of Ω, E ⊂ Ω, is called an event
Informally, an event is a statement on the outcomes of a random
experiment

We also assume that

Ω is an event (the certain or universal event)

if E is an event, so is its complement Ē
Hence, the empty set ∅ is an event (the impossible, or
vacuous, event)

the union of events is an event



Sample Space and Events

When E is just one outcome we say it is a simple event or a state
(e.g. E = {ω3})

When E is more than one, we say it is a composite event or,
simply, event (e.g. E = {ω2, ω21})



Sample Space
Describe the sample spaces for the following experiments
I roll a regular die

{1, 2, 3, 4, 5, 6}

I toss n coins (n = 4)

{HHHH,HHHT ,HHTH,HHTT ,HTHH,HTTH,HTHT ,HTTT ,
TTTT ,TTTH,TTHT ,TTHH,THTT ,THHT ,THTH,THHH}

I cast a regular die and, if 6 comes up, toss a coin

6H, 6T , 1, 2, 3, 4, 5

I measure the time for the emission of radioactive particle from
some atom

(0,∞)

(this is a non-discrete case)
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Events

Describe the events

1) when rolling a die, an even number comes up

2) when tossing n coins, the first n − 1 outcomes are tails

3) measuring the time for the emission of radioactive particle
from some atom, the emission occurs after 3 minutes

1) E = {2, 4, 6}
2)

E = {
n−1︷ ︸︸ ︷

TTTTTT T ,

n−1︷ ︸︸ ︷
TTTTTT H}

3) E = (3,∞) (using minutes as unit of time)
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Sample Space and Events

Events are subsets of a set, the sample space Ω

Logical statements on events ⇐⇒ operation with sets

Both event A and event B occur (conjunction) ⇐⇒ A ∩ B

at least one of A and B occurs (disjunction)/ either A or B or
both occur ⇐⇒ A ∪ B

the event A does not occur (negation) ⇐⇒ Ā

the event A occurs but the event B does not ⇐⇒ A \ B



Some Terminology

If A ∩ B = ∅, A and B are said to be disjoint or incompatible
or mutually exclusive events
(that A and B both occur is impossible: the occurrence of one
prevents the occurrence of the other)

If A ⊆ B, A is said to imply B (B occurs if A occurs)
In fact ⊆ is the set-theoretic equivalent of ⇒



Probability

The first two elements of a probabilistic model are the sample
space and the notion of events.

The third element is the assignment of a probability to the events
and outcomes of a random experiment

We need to formalize statements such as

the probability that when we roll a die an even number comes up is
1/2



Probability as Measure of Relative Frequencies

One interpretation views probability as a relative frequency (which
can be justified a posteriori by the result known as the law of large
numbers)

Carry out repeatedly and independently the same experiment a
large number of times N (roll the same die in the same conditions
N times)
record the number of times SN(E ) the event E occurs (”an even
number comes up”)
assign to the event the probability P(E ) = SN(E )/N, N large, (the
empirical limiting relative frequency in the N repetitions)



Probability as Measure of Relative Frequencies

The frequency definition of probability is based on the assumption
that identical and independent experiments can be carried out
(which is not always the case)

A priori there is no guarantee that the relative frequency should
converge to a limit and if that is the case, it is not clear how large
N should be for the approximation to be reliable

However even if there may be difficulties involved in defining
probability in a mathematical form using repetitive events, this
notion of probability is the basis of simulations, so you should keep
it in mind



Probability in a Simulation

Roll a die, what is the probability of A =”3 appears”?

The pseudo-code for the simulation to get the probability P(A)

counter_a=0

for i from 1 to N

roll a die

if(die shows 3)

counter_a = counter_a+1

end if

end for

return counter_a/N
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Probability in a Simulation. Implementation
I Python

import numpy as np

np.random.seed(164)

N=1000000

die= np.arange(6)+1

a=np.random.choice(die,N, replace=True)

np.count_nonzero(a==3)/N

I R

set.seed(1364)

N=1000000

a=sample(1:6,replace=T, N)

length(which(a==3))/N

I Matlab

rng(6356)

N=1000000;

a = randsample(6,N, true);

sum(a==3)/N



Probability

In general, the assignment of a probability to an event is rather
subtle

Sometimes there are some natural choices, for example based on
the existence of symmetries in the random experiment at hand
Sometimes the choice will be subjective (probability assignments
may differ from individual to individual)

Let us now consider a mathematical (axiomatic) definition of
probability:
probability as a function that satisfies some properties (a version of
these properties are indeed verified by the relative frequency)



Discrete Probability Space
Let the sample space Ω be non-empty and countable for the rest of
this chapter
Third element necessary to complete the description of a
probabilistic model is a function

P : Set of Events −→ [0, 1]

called probability that verifies the following two axioms

A1) P(Ω) = 1
The certain event has probability 1

A2) σ-additivity (countable additivity)
For every sequence (Ai )i∈N of disjoint/mutually exclusive
events, Ai ∩ Aj = ∅, i 6= j

P

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai )

(Ω,P) is called a discrete probability space, with Ω its sample
space, and subsets of Ω the events



Probability. Properties

For a discrete probability space (Ω,P), the following statements
hold true (all follow from A1 and A2)

S1) The impossible event has probability zero

P(∅) = 0

Proof. If Ai = ∅, i ∈ N, then
⋃∞

i=1 Ai = ∅

P(∅) = P

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai ) =
∞∑
i=1

P(∅)

which holds iff P(∅) = 0.



Probability. Properties

S2) Finite additivity

Let Ai , i = 1, . . . , n, be a finite family of disjoint events,
Ai ∩ Aj = ∅, i 6= j

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai )

This follows from countable additivity, A2, setting Ak = ∅ for
all k ≥ n. Thus it is a weaker notion than countable additivity.

When Ω is finite, we can equally define the probability space
using axioms A1 and A2 or A1 and S2 (finite additivity)



Probability. Properties

Other consequences of A1 and A2 (draw the corresponding Venn
diagram if in doubt)

S3) P(Ā) = 1− P(A)

1 = P(Ω) = P(A ∪ Ā) = P(A) + P(Ā)

since A ∩ Ā = ∅
S4) For any A,B ⊆ Ω

P(B \ A) = P(B)− P(A ∩ B)

Since B = (B \ A) ∪ (A ∩ B) , with B \ A and (A ∩ B)
disjoint, then

P(B) = P(B \ A) + P(A ∩ B)

hence the result



Probability. Properties

S5) For any or any A,B ⊆ Ω

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

Since A ∪ B = A ∪ (B \ A) and A and B \ A are disjoint,

P(A ∪ B) = P(A) + P(B \ A) = P(A) + P(B)− P(A ∩ B)

using S4



Inclusion-Exclusion Formulae (Poincaré’s Identities)

(Ω,P) a discrete probability space.
For any n ≥ 1 and for any choice of sets (events) A1, . . .An ⊆ Ω

P(A1 ∪ . . . ∪ An) =
n∑

k=1

(−)k−1
∑

1≤i1<...<ik≤n
P(Ai1 ∩ . . . ∩ Aik )

P(A1 ∩ . . . ∩ An) =
n∑

k=1

(−)k−1
∑

1≤i1<...<ik≤n
P(Ai1 ∪ . . . ∪ Aik )

They can be proven by induction
They are actually valid on any probability space (finite, countable
or uncountable)



Example

For example for n = 4, calling the events A1 = A, A2 = B,
A3 = C , A4 = D

P(A ∪ B ∪ C ∪ D) = P(A) + P(B) + P(C ) + P(D)

−P(A ∩ B)− P(A ∩ C )− P(A ∩ D)

−P(B ∩ C )− P(B ∩ D)− P(C ∩ D)

+P(A ∩ B ∩ C ) + P(A ∩ B ∩ D)

+P(A ∩ C ∩ D) + P(B ∩ C ∩ D)

−P(A ∩ B ∩ C ∩ D)

Alternating sum of the probabilities of each event (4 terms), each
possible pair of events (6), each possible triple of events (4), each
possible quadruple (1)



When to use the Poincaré formula

Very often if one has to compute the probability that at least one
event occurs or the probability that no event occurs, the Poincaré
formula is most useful

Indeed, let Ai be i = 1, . . . , n n events

P(A1 ∪ . . . ∪ An) is the probability that at least one of the n
events occurs

P(Ā1 ∩ . . . ∩ Ān) is the probability that none occurs

By the Poincaré formulae, these probabilities can be written in
terms of probability involving fewer events, which are often easier
to compute



Probability of events and outcomes

(Ω,P) discrete probability space, A = {ωi1 , . . . , ωik} a compound
event, then its probability is

P(A) =
k∑

j=1

P(ωij )

with the restriction 1 = P(Ω) =
∑

ω∈Ω P(ω)
Example

Ω = {ω1, ω2, ω3, ω4} P(ωi ) = p,∀i
A1 = {ω1, ω2},A2 = {ω1, ω3},A3 = {ω1, ω4}

Find P(Ai ), P(Ai ∩ Aj), P(A1 ∩ A2 ∩ A3), P(Ai ∪ Aj) etc.

P(ωi ) = 1/4, P(Ai ) = 2/4, P(Ai ∩ Aj) = 1/4 = P(A1 ∩ A2 ∩ A3)
P(Ai ∪ Aj) = 3/4, P(A1 ∪ A2 ∪ A3) = P(Ω) = 1
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Uniform Probability Space
A discrete probability space (Ω,P) which is finite (that is, Ω is
finite) and such that the outcomes ωi ∈ Ω are equiprobable is
called a uniform probability space.
In this case, then

P(ωi ) = 1/|Ω|

The previous page example is such a space
More generally for any event E (a subset of Ω)

P(E ) =
|E |
|Ω|

The probability of an event is the ratio of the number of cases that
are favorable to it, to the number of possible cases, when there is
nothing to make us believe that one case should occur rather than
any other [Laplace]

Thus the problem of computing a probability of an event becomes
the problem of counting the number of its elements



Equiprobability
It is necessary that all points in the sample space be equiprobable
for computing probability via simple counting P(E ) = |E |/|Ω|

Suppose we want to compute the probability of getting a three by
summing the numbers that turn up on tossing two dice

E = ”the sumof two throws is 3”

Since the sum is symmetric, we can think of using the following
sample space, where [i , j ] is the unordered couple, with i the
number for one of the dice and j for the other

Ω =



[1, 1] [1, 2] [1, 3] [1, 4] [1, 5] [1, 6]
[2, 2] [2, 3] [2, 4] [2, 5] [2, 6]

[3, 3] [3, 4] [3, 5] [3, 6]
[4, 4] [4, 5] [4, 6]

[5, 5] [5, 6]
[6, 6]





Equiprobability
There is nothing wrong in using this sample space, however these
simple events are not equally probable For example,

p([1, 1]) = 1/36

p([1, 2]) = p((1, 2) ∪ (2, 1)) = p((1, 2)) + p((2, 1)) = 2/36,

[i , j ] unordered couple, (i , j) ordered couple
[i , j ] one die shows the i-th face the other the j-th face
(i , j) the first die shows i the second j , if we throw them one after
the other or, if you toss them at the same time, just color the dice
differently: the red die shows i , the blue die j

[i , j ] = {(i , j), (j , i)}

Thus we may not compute the probability by simple counting the
number of the points in the space that are favorable to the event
(one point [1, 2]) and divide by the size of the space 21 We would
get 1/21, instead of the correct probability which is 2/36



Equiprobability

Instead we can use the following equiprobable sample space

Ω =



(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)


whose |Ω| = 36 outcomes are all equiprobable P((i , j)) = 1/36,
thus |E = {i + j = 3}| = 2, P(E ) = |E |/|Ω| = 2/36

More generally (exercise) the probability of rolling a sum of k , with
two dice is

P({i + j = k}) =
6− |7− k |

36
, k = 2, . . . , 12



Combinatorics. Multiplication Rule

First rule of counting. Multiplication Rule

If an object is formed by making a succession of choices such that
there are n1 possibilities for the first choice, n2 possibilities for the
second (after the first choice is made) etc. then the total number
of objects that can be made by making a set of choices is

|E | = n1 · n2 · · ·

For the rule to apply, the number of available possibilities of each
choice must be the same irrespective of which choice was made
previously (ni for the i-th choice, which may be different from nj).
However the set of available possibilities may differ and depend on
the choice made at the previous stages



Book Problem 31
Beethoven wrote 9 symphonies, 5 piano concertos, and 32 piano
sonatas.

a) How many ways are there to play first a Beethoven symphony
and then a Beethoven piano concerto?

9 · 5 = 45

You may find it helpful to draw a tree

b) The manager of a radio station decides that on each
successive evening (7 days per week), a Beethoven symphony
will be played followed by a Beethoven piano concerto
followed by a Beethoven piano sonata. For how many years
could this policy be continued before exactly the same
program would have to be repeated?

9 · 5 · 32 = 1440days ≈ 4 years
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Problem

How many ways can we roll three dice? In how many ways can
three dice appear when they are rolled? How many possible
numbers we get by rolling 3 dice (the order counts)?

We have a succession of three choices (one per die) and each die
represents a multiple choice of six possibilities ni = 6, thus there
are

6 · 6 · 6 = 216

possible rolls

This is obvious if you think of tossing the dice one after the other
rather than simultaneously (although it does not matter) The set
of choices at each throw of the dice in this case does not change
based on what happens at the previous stage (it is always one of
the numbers {1, 2, 3, 4, 5, 6} (and thus the number does not
change which is only thing that matters for the multiplicative rule)


