1) Let $f(x, y)=\sqrt{9-x^{2}-y^{2}}$
a) Give the domain and the range of $f: D_{f}=\left\{(x, y) \in \mathbb{R}^{2} ; x^{2}+y^{2} \leq 9\right\}$, and $\operatorname{Range}(f)=[0,3]$
b) Sketch some level curves of f

c) Sketch the graph of f
$z=\operatorname{sart}\left(9-y^{2}-x^{2}\right)$

d) find $f_{x}(0,0)$ and $f_{y}(0,0)$ (by using the definition)
$f_{x}(0,0)=\lim _{x \rightarrow 0} \frac{f(x, 0)-f(0,0)}{x}=\lim _{x \rightarrow 0} \frac{\sqrt{9-x^{2}}-3}{x}=\lim _{x \rightarrow 0} \frac{\left(9-x^{2}\right)-9}{x\left(\sqrt{9-x^{2}}+3\right)}=-\lim _{x \rightarrow 0} \frac{x}{\sqrt{9-x^{2}}+3}=0$, and $f_{y}(0,0)=0$ (by symmetry)
e) prove that f is differentiable at $(0,0)$

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)-f_{x}(0,0) \Delta x-f_{y}(0,0) \Delta y}{\sqrt{x^{2}+y^{2}}}=\lim _{(x, y) \rightarrow(0,0)} \frac{\sqrt{9-x^{2}-y^{2}}-3}{\sqrt{x^{2}+y^{2}}} \\
&=\lim _{(x, y) \rightarrow(0,0)} \frac{\left(9-x^{2}-y^{2}\right)-9}{\sqrt{x^{2}+y^{2}}\left(\sqrt{9-x^{2}-y^{2}}+3\right)} \text { (multiplying by the conjugate) } \\
&=-\lim _{(x, y) \rightarrow(0,0)} \frac{\sqrt{x^{2}+y^{2}}}{\sqrt{9-x^{2}-y^{2}}+3}=0
\end{aligned}
$$

hence f is differentiable at $(0,0)$
2) Find the directional derivative of the $f(x, y)=2 x y-y^{2}$ at $P=(5,5)$ in the direction of $\mathbf{u}=4 \mathbf{i}+3 \mathbf{j}$
solution:
$\nabla f=(2 y, 2 x-2 y) \Rightarrow \nabla f(5,5)=(10,0) ; \mathbf{v}=\frac{\mathbf{u}}{|u|}=\frac{4 \mathbf{i}+3 \mathbf{j}}{\sqrt{4^{2}+3^{2}}}=\frac{4}{5} \mathbf{i}+\frac{3}{5} \mathbf{j}$; hence
$(D f)_{\mathbf{u}, P}=\nabla f(P) \bullet \mathbf{v}=8$
3) Find the direction of maximum increase of $f(x, y)=x^{2}-3 x y+4 y^{2}$ at $P(1,2)$. Is there is a direction \mathbf{u} in which the rate of change of f at $P(1,2)$ equals 14 ? Justify your answer.
solution:
$\nabla f=(2 x-3 y,-3 x+8 y)$, then $\nabla f(1,2)=(-4,13)$, and $|\nabla f(1,2)|=\sqrt{16+169}=\sqrt{185}$
The direction of maximum increase of f is the direction of $\nabla f(1,2)$, hence $(-4 / \sqrt{185}, 13 / \sqrt{185})$
The rate of change in the direction of maximum increase is $\sqrt{185}<14$, then there is no direction \mathbf{u} in which the rate of change of f at $P(1,2)$ equals 14 .
4) The derivative of of $f(x, y)$ at $P(1,2)$ in the direction of $\mathbf{u}=\mathbf{i}+\mathbf{j}$ is $2 \sqrt{2}$ and in direction of $\mathbf{v}=-2 \mathbf{j}$ is -3 . Find the derivative of f in the direction of $\mathbf{w}=-\mathbf{i}-2 \mathbf{j}$.
solution:
$(D f)_{\mathbf{u}, P}=2 \sqrt{2} \Rightarrow f_{x}(P) \times \frac{1}{\sqrt{2}}+f_{y}(P) \times \frac{1}{\sqrt{2}}=2 \sqrt{2} \Rightarrow f_{x}(P)+f_{y}(P)=4$
$(D f)_{\mathbf{v}, P}=-3 \Rightarrow-f_{y}(P)=-3 \Rightarrow f_{y}(P)=3$, and then $f_{x}(P)=1$, hence
$(D f)_{\mathbf{w}, P}=1 \times \frac{-1}{\sqrt{5}}+3 \times \frac{-2}{\sqrt{5}}=\frac{-7}{\sqrt{5}}$
5) The derivative of of $f(x, y, z)$ at P is greatest in the direction of $\mathbf{v}=\mathbf{i}+\mathbf{j}+\mathbf{k}$. In this direction, the value of the derivative is $2 \sqrt{3}$. Find ∇f at P. Find the derivative of f at P in the direction of $\mathbf{w}=\mathbf{i}+\mathbf{j}$.
solution:
$-\nabla f=k \cdot \frac{\mathbf{v}}{|\mathbf{v}|}$ (cause ∇f and \mathbf{v} are collinear). Moreover $k=2 \sqrt{3}$, and then $\nabla f=2 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$
$-(D f)_{\mathbf{w}, P}=\nabla f(P) \bullet \frac{\mathbf{w}}{|\mathbf{w}|}=2 \times \frac{1}{\sqrt{2}}+2 \times \frac{1}{\sqrt{2}}+2 \times 0$
6) Given the surface $z=x^{2}-4 x y+y^{3}+4 y-2$ containing the point $P(1,-1,-2)$.

- Find an equation of the tangent plane to the surface at P.
- Find an equation of the normal line to the surface at P.
solution:
Let $w(x, y, z)=x^{2}-4 x y+y^{3}+4 y-2-z ; \nabla w=\left(2 x-4 y,-4 x+3 y^{2}+4,-1\right) \Rightarrow \nabla w(1,-1,-2)=$ $(6,3,-1)$, and the
$-(T): 6(x-1)+3(y+1)-(z+2)=0$
$-(N): x=6 t+1, y=3 t-1, z=-t-2, \quad t \in \mathbb{R}$

7) Find parametric equation for the line tangent to the curve of intersection of the surfaces $x y z=1$ and $x^{2}+2 y^{2}+3 z^{2}=6$ at the point $P(1,1,1)$.
solution:
$\nabla f=(y z, x z, x y) \Rightarrow \nabla f(1,1,1)=(1,1,1)$, and $\nabla g=(2 x, 4 y, 6 z) \Rightarrow \nabla g(1,1,1)=(2,4,6)$
$\left|\begin{array}{lll}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 2 & 4 & 6\end{array}\right|=2 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k} \Rightarrow$ tangent line $T: x=1+2 t, y 1-4 t, z=1+2 t$
8) By about how much will $f(x, y, z)=\ln \sqrt{x^{2}+y^{2}+z^{2}}$ change if the point $p(x, y, z)$ moves from $P(3,4,12)$ a distance of 0.1 unit in the direction of $\mathbf{u}=3 \mathbf{i}+6 \mathbf{j}-2 \mathbf{k}$?

solution:

the change $d f$ is given by $d f=(D f)_{\mathbf{u}, P} \times d s ; \nabla f=\left(\frac{x}{x^{2}+y^{2}+z^{2}}, \frac{y}{x^{2}+y^{2}+z^{2}}, \frac{z}{x^{2}+y^{2}+z^{2}}\right)$, and $\nabla f(P)=\left(\frac{3}{169}, \frac{4}{169}, \frac{12}{169}\right)$
$(D f)_{\mathbf{u}, P}=\nabla f(P) \bullet \frac{\mathbf{u}}{|\mathbf{u}|}=\frac{3}{169} \times \frac{3}{7}+\frac{4}{169} \times \frac{6}{7}-\frac{12}{169} \times \frac{2}{7}=\frac{9}{1183} ;$ then $d f=0.9 / 1183 \simeq 0.0008$
9) Locate all relative extrema and saddle points of $f(x, y)=x^{3}-y^{3}-2 x y+6$.
solution:
critical points: $(0,0)$ (saddle point); $(-2 / 3,2 / 3)$ (local maximum) and the maximum is $f(-2 / 3,2 / 3)=120 / 27$.
10) Locate all relative extrema and saddle points of $f(x, y)=4 x y-x^{4}-y^{4}$.

solution:

The critical points are $(0,0)$ (saddle point); $(1,1)$ (local maximum) and $f(1,1)=2 ;(-1,-1)$ (local maximum) and $f(-1,-1)=2$.
11) Find the absolute minimum and maximum values of $f(x, y)=3 x y-6 x-3 y+7$ on the closed triangular region R whose vertices are $(0,0),(3,0)$ and $(0,5)$.

solution:

critical point: $\partial f / \partial x=3 y-3$ and $\partial f / \partial y=-3 x-6$, then the only critical point is $(-2,1)$ on the path $x=0: g(y)=f(0, y)=-3 y+7, g^{\prime}(y)=-3 \neq 0$,
on the path $y=0: h(x)=f(x, 0)=-6 x+7, h^{\prime}(x)=-6 \neq 0$,
on the path $y=5-\frac{5}{3} x: k(x)=f(x, x)=-5 x^{2}+14 x-8, k^{\prime}(x)=-10 x+14, k^{\prime}(x)=0 \rightarrow$ $x=7 / 5$, and then $y=8 / 3$

point	value
$(-2,1)$	9
$(0,0)$	7
$(3,0)$	-11
$(0,5)$	-8
$(7 / 5,8 / 3)$	$81 / 5$

The minimum is then equals to -11 at $(3,0)$; the maximum is equals to $81 / 5$ at $(7 / 5,8 / 3)$
12) Find the absolute minimum and maximum of the function $f(x, y)=x^{2}+2 y^{2}-y-1$ over the region $R=\left\{(x, y) ; x^{2}+y^{2} \leq 1, y \geq 0\right\}$.

solution:

critical point: $\partial f / \partial x=2 x$ and $\partial f / \partial y=4 y-1$, then the only critical point is $(0,1 / 4)$
on the path $y=0: g(x)=f(x, 0)=x^{2}-1, g^{\prime}(x)=2 x ; g^{\prime}(x)=0 \Rightarrow x=0$, and then $y=0$; $(0,0)$ is also a critical point
on the semi circle $x^{2}+y^{2}=1 \Rightarrow x^{2}=1-y^{2}$:
$h(y)=f\left(1-y^{2}, y\right)=y^{2}-y, h^{\prime}(y)=2 y-1, h^{\prime}(y)=0 \rightarrow y=1 / 2$, and then $x= \pm \sqrt{3} / 2$

point	value
$(0,1 / 4)$	$-9 / 8$
$(-1,0)$	0
$(1,0)$	0
$(0,0)$	-1
$(\sqrt{3} / 2,1 / 2)$	$1 / 2$
$(-\sqrt{3} / 2,1 / 2)$	$1 / 2$

The minimum is then equals to $-9 / 8$ at $(0,1 / 4)$; the maximum is equals to $1 / 2$ at $(\sqrt{3} / 2,1 / 2)$ and $(-\sqrt{3} / 2,1 / 2)$.

