Exercise 1 (5 pts) Is the series $\sum_{n \ge 0} \frac{(-1)^n}{n!}$ convergent? absolutely convergent? Justify your answers.

Exercise 2 (5 pts) Does $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2 - y^2}$ exist? Justify your answer.

Exercise 3 (17 pts) We consider the function defined on \mathbb{R}^2 by : $f(x,y) = x^2 + 2y^2 - \frac{y^3}{3}$.

- 1. Find all the critical points of f. (4 pts)
- 2. Give the nature (local minimum, local maximum or saddle point) of each of the critical points you found in question 1. (8 pts)
- 3. Give an equation for the tangent plane to the graph of f at the point (0, 4, f(0, 4)). (5 pts)

Exercise 4 (35 pts) Let R be the region in the plane bounded by the triangle of vertices O(0,0), A(2,0) and B(1,1). We denote by C_1 the line segment joining O to A, C_2 the line segment joining A to B, and C_3 the line segment joining B to O.

- 1. (a) Compute $\iint_R (y x^2) dx dy$, using the order dx dy. (6 pts)
 - (b) Write the above double integral as iterated integrals with the order dy dx (you do **not** have to re-calculate its value). (4 pts)
- 2. Let \vec{F} be the vector field defined on \mathbb{R}^2 by : $\vec{F}(x,y) = (x+x^2y)\vec{i} + (xy+y)\vec{j}$.
 - (a) Find, by direct computation, the value of $\int_{C_3} \vec{F} \cdot \vec{dl}$ (work of \vec{F} along C_3). (6 pts)
 - (b) Compute curl $\vec{F}(x, y)$ (where curl \vec{F} is the \vec{k} -component of the vector field $\overrightarrow{\text{curl}} \vec{F}$). (2 pts)
 - (c) Apply Green's theorem to find the value of $\int_{C_1} \vec{F} \cdot d\vec{l} + \int_{C_2} \vec{F} \cdot d\vec{l}$. (5 pts)

3. Let \vec{G} be the vector field defined on \mathbb{R}^2 by : $\vec{G}(x,y) = (2x)\vec{i} + (4y - y^2)\vec{j}$.

- (a) Show that \vec{G} is conservative. (4 pts)
- (b) Give a potential function for \vec{G} . (4 pts)

(c) What is the value of
$$\int_{C_1} \vec{G} \cdot \vec{dl} + \int_{C_2} \vec{G} \cdot \vec{dl}$$
 ? (4 pts)

Exercise 5 (15 pts) Compute the volume of the region D of the space lying in the first octant, bounded from below by the xy-plane, from the sides by the planes x = 2 and y = 2, and from above by the plane x + y + 2z = 6. The region D is sketched in page 2.

Exercise 6 (12 pts)

1. For each the following two power series, give the radius of convergence. It is sufficient to provide justification for only one of them. (2 pts)

(a)
$$\sum_{n \ge 0} \frac{x^{2n}}{(2n)!}$$

(b) $\sum_{n \ge 0} \frac{x^{2n+1}}{(2n+1)!}$

- 2. For every $x \in \mathbb{R}$, we set $\operatorname{ch}(x) = \frac{1}{2}(e^x + e^{-x})$ and $\operatorname{sh}(x) = \frac{1}{2}(e^x e^{-x})$. Find the Maclaurin series generated by each of the functions ch and sh. (6 pts)
- 3. Show that for any $t \in [0,1]$, $ch(t) \leq \frac{5}{3}$. (*Hint : you may use the fact that ch is an increasing function on* $[0, +\infty[$, and that $1 \leq ln(3)$). (2 pts)
- 4. Deduce from the preceding question an upper bound for the error committed when approximating $\frac{1}{2}(e+\frac{1}{e})$ by 1.5. You may leave the final answer as a fraction $\frac{a}{b}$. (*Hint : start by writing that ch*(*x*) = $1 + \frac{x^2}{2!} + 0\frac{x^3}{3!} + R_3(x)$, then use Taylor remainder's estimation theorem...). (2 pts)

Exercise 7 (11 pts) Let R be the region inside the reversed empty ice-cream cone $z = -\sqrt{x^2 + y^2}$ and sandwiched between the planes z = -1 and z = -2.

- 1. Find the volume of R using a triple integral in spherical coordinates, with the order $d\rho \ d\phi \ d\theta$. (9 pts)
- 2. Setup the triple integral whose evaluation would give you the volume of R, in spherical coordinates, with the order $d\phi \ d\rho \ d\theta$ (do **not** re-calculate the volume of R). (2 pts)