Problem 1 (answer on pages $1 \& 2$ of the booklet)

Which of the following series converge, and which diverge? (5 pts each)
a) $\sum_{n=2}^{\infty} \frac{\sin (n)}{n^{n}}$
b) $\sum_{n=2}^{\infty} \arctan \left(\frac{1}{1+n+n^{2}}\right)$
c) $\sum_{n=1}^{\infty} \ln n\left(e^{\frac{1}{n}}-1\right)^{13}$

Problem 2 (answer on pages 3 \& 4 of the booklet)
Consider the function $f(x, y)=12 x^{2}+12 y^{2}+(x+y)^{3}$
a) Find all local maxima, local minima and saddle point for $f(x, y)$.(13 pts)
b) In this part, we constrain (x, y) to lie in the disk $x^{2}+y^{2}=4$. At what points of the disk does f attain its absolute maximum and minimum values? (12 pts)
c) In what direction does f increases most rapidly at the point $P(1,1)$? Also find the directions of zero change at $P(1,1) .(12 \mathrm{pts})$

Problem 3 (answer on pages 5 \& 6 of the booklet)

Show that the vector field

$$
\vec{F}(x, y, z)=\left(\frac{y}{1+x^{2} y^{2}}\right) \vec{\imath}+\left(\frac{x}{1+x^{2} y^{2}}+e^{z} \cos y\right) \vec{\jmath}+\left(e^{z} \sin y\right) \vec{k}
$$

is conservative, then evaluate the work done by \vec{F} along a curve joining $\left(\frac{1}{\pi}, \pi, 1\right)$ and $\left(\frac{2}{\pi}, \frac{\pi}{2}, \ln 3\right)$. (24 pts)

Problem 4 (answer on pages $7 \& 8$ of the booklet)

Let R be the region in the first quadrant bounded by the curves $y=x^{2}, y=\frac{x^{2}}{5}, x y=2$, and $x y=4$.
Use the transformation

$$
u=\frac{x^{2}}{y} \text { and } \quad v=x y
$$

to rewrite $\iint_{R} d A(x, y)$ as an integral over an appropriate region G in the $u v$ - plane. Then evaluate the $u v$ integral.(25 $p t s)$

Problem 5 (answer on pages $9 \& 10$ of the booklet)

Let D be the region bounded above by the sphere $x^{2}+y^{2}+z^{2}=4$ and below by plane $z=1$ and on the sides by the cone $z=\sqrt{x^{2}+y^{2}}$. Set up, but do not evaluate, the iterated triple integral that gives the volume of D in the order: (8 $p t s$ each)
(i) $d z d r d \theta$
(ii) $d r d z d \theta$
(iii) $d \rho d \emptyset d \theta$
(iv) $d \emptyset d \rho d \theta$

Problem 6 (answer on page 11 of the booklet)

Find the volume of the region in the space bounded below by the $x y$ plane, on the sides by the cylinder $y=x^{2}$ and above by the plane $y+z=1$. Use the order $d y d x d z$ (10 pts)

Given a vector field $F=\left(1+y^{2}\right) \vec{\imath}$. Consider the region R enclosed by x-axis, $x=1$ and $y=x^{3}$.Travelling in a counterclockwise direction along the boundary R, call C_{1} the portion of R that goes from $(0,0)$ to $(1,0), C_{2}$ the portion of R that goes from $(1,0)$ to $(1,1)$, and C_{3} the portion of R that goes from $(1,1)$ to $(0,0)$.
a) Use Green's theorem to calculate the work integral $\oint_{R} \vec{F} \cdot \vec{T} d s$ and the flux integral $\oint_{R} \vec{F} \cdot \vec{n} d s$. (10 pts)
b) Calculate the work of F along C_{1} and C_{2} directly.(8 pts)
c) Use parts (a) and (b) to calculate the work of F along C_{3}. (5 pts)

Problem 8 (answer on page 14 of the booklet)

Integrate $f(x, y)=\frac{x}{\sqrt{16 x^{6}+1}}$ over the curve $C: y=x^{4}+1$ from $(0,1)$ to $(1,2) .(10 \mathrm{pts})$
Problem 9 (answer on pages $15 \& 16$ of the booklet)
a) Use the proof of the "integral test" to show that $\ln (n!) \geq n \ln n-n+1$ for $n>1$. (8 pts)
b) Use part (a) to show that $\ln (n!) \geq n \ln n$ for $n \geq 10$. (7 pts)
c) Decide if $\sum_{n=2}^{\infty} \frac{\ln (n!)}{n^{2} \ln n}$ converge or diverge? (5 pts)

Good Luck !
K. Yaghi

